論文の概要: Implementing multi-controlled X gates using the quantum Fourier transform
- arxiv url: http://arxiv.org/abs/2407.18024v1
- Date: Thu, 25 Jul 2024 13:22:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:58:54.111489
- Title: Implementing multi-controlled X gates using the quantum Fourier transform
- Title(参考訳): 量子フーリエ変換を用いたマルチコントロールXゲートの実装
- Authors: Vladimir V. Arsoski,
- Abstract要約: 本稿では,多くの複雑な量子ゲートの実装において,量子演算に基づくアプローチを効果的に利用する方法を示す。
回路の深さがわずか数個のアシラ量子ビットで大幅に低減されることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing has the potential to solve many complex algorithms in the domains of optimization, arithmetics, structural search, financial risk analysis, machine learning, image processing, and others. Quantum circuits built to implement these algorithms usually require multi-controlled gates as fundamental building blocks, where the multi-controlled Toffoli stands out as the primary example. For implementation in quantum hardware, these gates should be decomposed into many elementary gates, which results in a large depth of the final quantum circuit. However, even moderately deep quantum circuits have low fidelity due to decoherence effects and, thus, may return an almost perfectly uniform distribution of the output results. This paper proposes a different approach for efficient cost multi-controlled gates implementation using the quantum Fourier transform. We show how the depth of the circuit can be significantly reduced using only a few ancilla qubits, making our approach viable for application to noisy intermediate-scale quantum computers. This quantum arithmetic-based approach can be efficiently used to implement many complex quantum gates.
- Abstract(参考訳): 量子コンピューティングは、最適化、算術、構造探索、財務リスク分析、機械学習、画像処理などの分野において、多くの複雑なアルゴリズムを解く可能性がある。
これらのアルゴリズムを実装するために構築された量子回路は、通常、マルチコントロールゲートを基本構成ブロックとして要求する。
量子ハードウェアの実装には、これらのゲートを多くの基本ゲートに分解する必要がある。
しかし、中程度に深い量子回路でさえ、デコヒーレンス効果による忠実度が低いため、出力結果のほぼ完全に均一な分布を返すことができる。
本稿では,量子フーリエ変換を用いた高効率なマルチコントロールゲートの実装法を提案する。
回路の深さがわずか数ビットのアンシラ量子ビットで大幅に低減できることを示し、ノイズの多い中間スケール量子コンピュータに適用可能なアプローチを示す。
この量子演算に基づくアプローチは、多くの複雑な量子ゲートを実装するのに効果的に利用できる。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
我々の量子シンセサイザーの目的は、ユーザーが高レベルなコマンドを使って量子アルゴリズムを実装できるようにすることである。
量子アルゴリズムを実装するための提案手法は、機械学習の分野で潜在的に有効である。
論文 参考訳(メタデータ) (2022-09-20T06:25:47Z) - Hardware-Conscious Optimization of the Quantum Toffoli Gate [11.897854272643634]
この論文は、この抽象レベルで量子回路を最適化するための解析的および数値的アプローチを拡張している。
本稿では,解析的ネイティブゲートレベルの最適化と数値最適化を併用する手法を提案する。
最適化されたToffoliゲート実装は、標準実装と比較して18%の非忠実性低下を示す。
論文 参考訳(メタデータ) (2022-09-06T17:29:22Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
近年、変分量子回路は量子シミュレーションや量子機械学習に広く用いられている。
しかし、ランダムな構造を持つ量子回路は、回路深さと量子ビット数に関して指数関数的に消える勾配のため、トレーニング容易性が低い。
この結果、ディープ量子回路は実用的なタスクでは実現できないという一般的な信念が導かれる。
論文 参考訳(メタデータ) (2022-03-17T15:06:40Z) - Scalable algorithm simplification using quantum AND logic [18.750481652943005]
我々は、コストを削減し、キー量子回路の実行を可能にする AND 論理の量子バージョンを実装している。
高温超伝導量子プロセッサにおいて,最大8キュービットの高密度一般化トフォリゲートとGroverの探索アルゴリズムを64エントリの探索空間で低深度合成する。
論文 参考訳(メタデータ) (2021-12-30T04:25:39Z) - QuantumCircuitOpt: An Open-source Framework for Provably Optimal Quantum
Circuit Design [0.0]
我々は,任意のユニタリゲートをハードウェアネイティブゲート列に分解する数学的最適化とアルゴリズムを実装した,新しいオープンソースフレームワークQuantumCircuitOptを提案する。
QCOptは、最大4キュービットの回路上で必要ゲート数を最大57%削減し、コモディティコンピューティングハードウェア上では数分未満で実行可能であることを示す。
また、IBMやRigetti、Googleなど、さまざまなハードウェアプラットフォームに基づいて、QCOptパッケージをさまざまな組み込みネイティブゲートセットに適合させる方法も示しています。
論文 参考訳(メタデータ) (2021-11-23T06:45:40Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z) - Topological Quantum Compiling with Reinforcement Learning [7.741584909637626]
任意の単一ビットゲートを有限の普遍集合から基本ゲートの列にコンパイルする効率的なアルゴリズムを導入する。
このアルゴリズムは、量子物理学における深層学習の興味深い応用への新たな道を開くことができる。
論文 参考訳(メタデータ) (2020-04-09T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。