論文の概要: Multi-Agent Deep Reinforcement Learning for Resilience Optimization in 5G RAN
- arxiv url: http://arxiv.org/abs/2407.18066v1
- Date: Thu, 25 Jul 2024 14:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:49:09.688752
- Title: Multi-Agent Deep Reinforcement Learning for Resilience Optimization in 5G RAN
- Title(参考訳): 5G RANにおけるレジリエンス最適化のためのマルチエージェント深部強化学習
- Authors: Soumeya Kaada, Dinh-Hieu Tran, Nguyen Van Huynh, Marie-Line Alberi Morel, Sofiene Jelassi, Gerardo Rubino,
- Abstract要約: 本稿では,多エージェント深層強化学習に基づく高密度マルチセルネットワークのレジリエンスをグローバルに最適化し,この問題に対処することを目的とする。
具体的には,セルアンテナを動的に傾けて送信電力を再構成することで,障害を軽減し,カバー範囲とサービス可用性を向上することができる。
- 参考スコア(独自算出の注目度): 5.3807986199066375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resilience is defined as the ability of a network to resist, adapt, and quickly recover from disruptions, and to continue to maintain an acceptable level of services from users' perspective. With the advent of future radio networks, including advanced 5G and upcoming 6G, critical services become integral to future networks, requiring uninterrupted service delivery for end users. Unfortunately, with the growing network complexity, user mobility and diversity, it becomes challenging to scale current resilience management techniques that rely on local optimizations to large dense network deployments. This paper aims to address this problem by globally optimizing the resilience of a dense multi-cell network based on multi-agent deep reinforcement learning. Specifically, our proposed solution can dynamically tilt cell antennas and reconfigure transmit power to mitigate outages and increase both coverage and service availability. A multi-objective optimization problem is formulated to simultaneously satisfy resiliency constraints while maximizing the service quality in the network area in order to minimize the impact of outages on neighbouring cells. Extensive simulations then demonstrate that with our proposed solution, the average service availability in terms of user throughput can be increased by up to 50-60% on average, while reaching a coverage availability of 99% in best cases.
- Abstract(参考訳): レジリエンス(Resilience)とは、ネットワークが障害に対して抵抗し、適応し、迅速に回復し、ユーザの視点から許容できるレベルのサービスを維持する能力である。
先進的な5Gや次の6Gを含む将来の無線ネットワークが出現すると、重要なサービスは将来のネットワークにとって不可欠なものとなり、エンドユーザーには未断のサービス提供が必要になる。
残念ながら、ネットワークの複雑さ、ユーザモビリティ、多様性の増大により、大規模なネットワーク展開へのローカル最適化に依存する現在のレジリエンス管理テクニックをスケールすることは難しくなっています。
本稿では,多エージェント深層強化学習に基づく高密度マルチセルネットワークのレジリエンスをグローバルに最適化し,この問題に対処することを目的とする。
具体的には,セルアンテナを動的に傾けて送信電力を再構成することで,障害を軽減し,カバー範囲とサービス可用性を向上することができる。
ネットワーク領域におけるサービス品質を最大化しながら、近接するセルに対する障害の影響を最小限に抑えつつ、レジリエンス制約を同時に満たすために、多目的最適化問題を定式化する。
その結果,提案したソリューションでは,ユーザスループットの観点から平均サービス可用性を50~60%向上し,ベストケースでは99%のカバレッジを達成できることがわかった。
関連論文リスト
- Edge computing service deployment and task offloading based on
multi-task high-dimensional multi-objective optimization [5.64850919046892]
本研究では,マルチユーザ環境におけるサービス展開とタスクオフロードの課題について検討する。
レイテンシ、エネルギー消費、コストを考慮せずに安定したサービス提供を確保するために、ネットワークの信頼性も組み込まれている。
エッジサーバの適切な使用を促進するため、第4のタスクオフロード目的としてロードバランシングを導入している。
論文 参考訳(メタデータ) (2023-12-07T07:30:47Z) - QoS-Aware Service Prediction and Orchestration in Cloud-Network
Integrated Beyond 5G [11.864695986880347]
本稿では,レイテンシを増大させながら全体のコストを最小化することを目的として,最適化問題を定式化する非線形プログラミングモデルを提案する。
RNNを用いたDDQLベースの手法を導入し,サービス配置のための水充填方式のアルゴリズムを用いてユーザ行動を予測する。
論文 参考訳(メタデータ) (2023-09-18T22:24:42Z) - Constrained Deployment Optimization in Integrated Access and Backhaul
Networks [0.0]
IABネットワークのカバレッジに対するデプロイメント最適化の効果について検討する。
様々なミリ波(mmWave)ブロッキングを意識した配置最適化手法を提案する。
その結果,デプロイメントの最適化に制限があるにもかかわらず,ネットワーク計画によってIABネットワークのカバレッジが大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-11T08:31:07Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
再構成可能なインテリジェントサーフェス (STAR-RIS) アシストネットワークを同時に送信および反射するカバレッジとキャパシティ最適化のための新しいモデルを提案する。
損失関数ベースの更新戦略はコアポイントであり、各更新時にmin-normソルバによってカバレッジとキャパシティの両方の損失関数の重みを計算することができる。
解析結果から,提案手法は固定重みに基づくMOアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-04-13T13:52:22Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z) - Cognitive Radio Network Throughput Maximization with Deep Reinforcement
Learning [58.44609538048923]
RF-CRN(Radio Frequency powered Cognitive Radio Networks)は、IoT(Internet of Things)などの最新のネットワークの目と耳である可能性が高い。
自律的と考えるには、RF駆動のネットワークエンティティは、ネットワーク環境の不確実性の下でネットワークスループットを最大化するために、ローカルで決定する必要がある。
本稿では,この欠点を克服し,無線ゲートウェイがネットワークスループットを最大化するための最適なポリシーを導出できるように,深層強化学習を提案する。
論文 参考訳(メタデータ) (2020-07-07T01:49:07Z) - Multi-Agent Reinforcement Learning for Adaptive User Association in
Dynamic mmWave Networks [17.295158818748188]
マルチエージェント強化学習に基づくユーザアソシエーションのためのスケーラブルで柔軟なアルゴリズムを提案する。
ユーザーは、ローカルな観察のみに基づいて、ネットワークの総和率を最適化するために、自律的に行動を調整することを学習する独立したエージェントとして振る舞う。
シミュレーションの結果,提案アルゴリズムは無線環境の変化に適応できることを示す。
論文 参考訳(メタデータ) (2020-06-16T10:51:27Z) - Deep Learning for Radio Resource Allocation with Diverse
Quality-of-Service Requirements in 5G [53.23237216769839]
本研究では,基地局の最適資源配分ポリシーを近似するディープラーニングフレームワークを開発する。
完全接続ニューラルネットワーク(NN)は,近似誤差とサブキャリア数の量子化誤差により,要求を完全に保証できないことがわかった。
無線チャネルの分布と無線ネットワークにおけるサービスのタイプが定常的でないことを考慮し,非定常的無線ネットワークにおけるNNの更新にディープトランスファー学習を適用した。
論文 参考訳(メタデータ) (2020-03-29T04:48:22Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築する。
次に、教師なし原始対実対実最適化手法を用いて最適電力配分決定を学習する。
論文 参考訳(メタデータ) (2020-02-17T07:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。