Detection of mode-intrinsic quantum entanglement
- URL: http://arxiv.org/abs/2407.18095v1
- Date: Thu, 25 Jul 2024 15:01:47 GMT
- Title: Detection of mode-intrinsic quantum entanglement
- Authors: Carlos E. Lopetegui, Mathieu Isoard, Nicolas Treps, Mattia Walschaers,
- Abstract summary: We propose a witness to detect a strong form of entanglement that only non-Gaussian states possess.
The strength of our witness is two-fold: it only requires measurements in one basis to check entanglement in any arbitrary mode basis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum correlations are at the core of the power of quantum information and are necessary to reach a quantum computational advantage. In the context of continuous-variable quantum systems, another necessary ressource for quantum advantages is non-Gaussianity. In this work, we propose a witness, based on previously known relations between metrological power and quantum correlations, to detect a strong form of entanglement that only non-Gaussian states possess and that cannot be undone by passive optical operations, i.e., entanglement in all mode bases. The strength of our witness is two-fold: it only requires measurements in one basis to check entanglement in any arbitrary mode basis; it can be made applicable experimentally using homodyne measurements and without requiring a full tomography of the state.
Related papers
- Latent optical nonclassicality of conditionally-prepared states [0.0]
Nonclassical steering is a class of quantum correlations beyond quantum entanglement and quantum discord.
We develop a technique that overcomes the limitation for single-mode quantum states conditionally prepared through measurements on another mode of a two-mode state.
arXiv Detail & Related papers (2024-08-08T19:49:25Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Experimental investigation of quantum uncertainty relations with
classical shadows [7.675613458661457]
We experimentally investigate quantum uncertainty relations construed with relative entropy of coherence.
We prepare a family of quantum states whose purity can be fully controlled.
Our results indicate the tightness of quantum coherence lower bounds dependents on the reference bases as well as the purity of quantum state.
arXiv Detail & Related papers (2022-02-14T00:26:31Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum coherence with incomplete set of pointers and corresponding
wave-particle duality [0.0]
Quantum coherence quantifies the amount of superposition in a quantum system.
We develop the corresponding resource theory, identifying the free states and operations.
We obtain a complementarity relation between the so-defined quantum coherence and the which-path information in an interferometric set-up.
arXiv Detail & Related papers (2021-08-12T16:55:40Z) - Quantum Correlations beyond Entanglement and Discord [0.0]
We experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord.
We implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
arXiv Detail & Related papers (2020-10-07T15:52:20Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.