論文の概要: Multi-Resolution Histopathology Patch Graphs for Ovarian Cancer Subtyping
- arxiv url: http://arxiv.org/abs/2407.18105v1
- Date: Thu, 25 Jul 2024 15:08:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:39:06.780367
- Title: Multi-Resolution Histopathology Patch Graphs for Ovarian Cancer Subtyping
- Title(参考訳): 卵巣癌サブタイプ別マルチリゾリューション・ヒストロジーパッチグラフ
- Authors: Jack Breen, Katie Allen, Kieran Zucker, Nicolas M. Orsi, Nishant Ravikumar,
- Abstract要約: マルチレゾリューショングラフモデルは、パッチの空間的関係を複数の倍率で利用し、各パッチのコンテキストを学習する。
卵巣癌に対するグラフモデルの最も徹底的な検証を行う。
基礎モデルとマルチレゾリューショングラフネットワークの組み合わせの精度は、これらのモデルの臨床的適用性への一歩となる。
- 参考スコア(独自算出の注目度): 2.0661578265672094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision models are increasingly capable of classifying ovarian epithelial cancer subtypes, but they differ from pathologists by processing small tissue patches at a single resolution. Multi-resolution graph models leverage the spatial relationships of patches at multiple magnifications, learning the context for each patch. In this study, we conduct the most thorough validation of a graph model for ovarian cancer subtyping to date. Seven models were tuned and trained using five-fold cross-validation on a set of 1864 whole slide images (WSIs) from 434 patients treated at Leeds Teaching Hospitals NHS Trust. The cross-validation models were ensembled and evaluated using a balanced hold-out test set of 100 WSIs from 30 patients, and an external validation set of 80 WSIs from 80 patients in the Transcanadian Study. The best-performing model, a graph model using 10x+20x magnification data, gave balanced accuracies of 73%, 88%, and 99% in cross-validation, hold-out testing, and external validation, respectively. However, this only exceeded the performance of attention-based multiple instance learning in external validation, with a 93% balanced accuracy. Graph models benefitted greatly from using the UNI foundation model rather than an ImageNet-pretrained ResNet50 for feature extraction, with this having a much greater effect on performance than changing the subsequent classification approach. The accuracy of the combined foundation model and multi-resolution graph network offers a step towards the clinical applicability of these models, with a new highest-reported performance for this task, though further validations are still required to ensure the robustness and usability of the models.
- Abstract(参考訳): コンピュータビジョンモデルは卵巣上皮癌サブタイプを分類する能力はますます高まっているが、単一の解像度で小さな組織パッチを処理することで病理学者と異なる。
マルチレゾリューショングラフモデルは、パッチの空間的関係を複数の倍率で利用し、各パッチのコンテキストを学習する。
本研究では,現在までの卵巣癌サブタイプに対するグラフモデルについて,最も徹底的な検証を行っている。
リーズ・インストラクション・インスティテュートで治療を受けた434人の患者を対象に,1864年のスライド画像(WSI)の5倍のクロスバリデーションを用いて7つのモデルを調整,訓練した。
クロスバリデーションモデルは,30例の100 WSIと80例の80 WSIを用いて,バランスの取れたホールドアウトテストセットを用いて,アンサンブルおよび評価を行った。
10x+20倍の倍率データを用いたグラフモデルでは,クロスバリデーション,ホールドアウトテスト,外部バリデーションのバランスが73%,88%,99%であった。
しかし、これは、外部バリデーションにおける注意ベースの多重インスタンス学習のパフォーマンスを93%の精度で上回っただけである。
グラフモデルは、ImageNetで事前訓練されたResNet50ではなく、UNIファンデーションモデルを使用することで、大きな恩恵を受けました。
基礎モデルとマルチレゾリューショングラフネットワークの組み合わせの精度は、これらのモデルの臨床的適用性への一歩であり、このタスクには新たな最高のパフォーマンスが報告されているが、モデルの堅牢性とユーザビリティを保証するためには、さらなる検証が必要である。
関連論文リスト
- Classifier Enhanced Deep Learning Model for Erythroblast Differentiation with Limited Data [0.08388591755871733]
病態と遺伝疾患の1%を含む血液疾患は、重大な診断上の課題を呈している。
本手法では,機械学習モデルの有効性を考慮した各種機械学習設定の評価を行う。
データが利用可能になった場合、提案されたソリューションは、小さくてユニークなデータセットの精度を高めるためのソリューションである。
論文 参考訳(メタデータ) (2024-11-23T15:51:15Z) - Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
本研究は,病理組織像を用いた乳癌分類への新規かつ正確なアプローチを提案する。
さまざまな画像データセット間で、主要な畳み込みニューラルネットワーク(CNN)モデルを体系的に比較する。
そこで本研究では,スタンドアロンCNNモデルにおいて,例外的分類精度を実現するために必要な設定について検討した。
論文 参考訳(メタデータ) (2024-10-04T11:31:43Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Comparative Analysis of Transfer Learning Models for Breast Cancer Classification [10.677937909900486]
本研究は, 病理組織学的スライドにおいて, 浸潤性直腸癌 (IDC) と非IDCを区別する深層学習モデルの効率について検討した。
ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, SqueezeNet。
論文 参考訳(メタデータ) (2024-08-29T18:49:32Z) - Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
論文 参考訳(メタデータ) (2024-08-16T20:15:24Z) - A Comprehensive Evaluation of Histopathology Foundation Models for Ovarian Cancer Subtype Classification [1.9499122087408571]
病理組織学の基礎モデルは、多くのタスクにまたがる大きな約束を示している。
これまでで最も厳格な単一タスクによる病理組織学的基盤モデルの検証を報告した。
病理組織学的基盤モデルは卵巣がんの亜型化に明確な利益をもたらす。
論文 参考訳(メタデータ) (2024-05-16T11:21:02Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
データから現実的な拡張を自動的に学習することは、生成モデルを用いてラベル効率の良い方法で可能であることを示す。
これらの学習の強化は、モデルをより堅牢で統計的に公平に配布できることを示した。
論文 参考訳(メタデータ) (2023-04-18T18:15:38Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。