論文の概要: Enhanced Privacy Bound for Shuffle Model with Personalized Privacy
- arxiv url: http://arxiv.org/abs/2407.18157v1
- Date: Thu, 25 Jul 2024 16:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:29:21.011871
- Title: Enhanced Privacy Bound for Shuffle Model with Personalized Privacy
- Title(参考訳): パーソナライズされたプライバシを持つシャッフルモデルのためのプライバシー境界の強化
- Authors: Yixuan Liu, Yuhan Liu, Li Xiong, Yujie Gu, Hong Chen,
- Abstract要約: Differential Privacy(DP)は、ローカルユーザと中央データキュレーターの間の中間信頼サーバを導入する、強化されたプライバシプロトコルである。
これは、局所的にランダム化されたデータを匿名化しシャッフルすることで、中央のDP保証を著しく増幅する。
この研究は、各ユーザーごとにパーソナライズされたローカルプライバシを必要とする、より実践的な設定のために、中央のプライバシ境界を導出することに焦点を当てている。
- 参考スコア(独自算出の注目度): 32.08637708405314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The shuffle model of Differential Privacy (DP) is an enhanced privacy protocol which introduces an intermediate trusted server between local users and a central data curator. It significantly amplifies the central DP guarantee by anonymizing and shuffling the local randomized data. Yet, deriving a tight privacy bound is challenging due to its complicated randomization protocol. While most existing work are focused on unified local privacy settings, this work focuses on deriving the central privacy bound for a more practical setting where personalized local privacy is required by each user. To bound the privacy after shuffling, we first need to capture the probability of each user generating clones of the neighboring data points. Second, we need to quantify the indistinguishability between two distributions of the number of clones on neighboring datasets. Existing works either inaccurately capture the probability, or underestimate the indistinguishability between neighboring datasets. Motivated by this, we develop a more precise analysis, which yields a general and tighter bound for arbitrary DP mechanisms. Firstly, we derive the clone-generating probability by hypothesis testing %from a randomizer-specific perspective, which leads to a more accurate characterization of the probability. Secondly, we analyze the indistinguishability in the context of $f$-DP, where the convexity of the distributions is leveraged to achieve a tighter privacy bound. Theoretical and numerical results demonstrate that our bound remarkably outperforms the existing results in the literature.
- Abstract(参考訳): 差別化プライバシ(DP)のシャッフルモデル(shuffle model of Differential Privacy)は、ローカルユーザと中央データキュレーターの間の中間信頼サーバを導入する、強化されたプライバシプロトコルである。
これは、局所的にランダム化されたデータを匿名化しシャッフルすることで、中央のDP保証を著しく増幅する。
しかし、複雑なランダム化プロトコルのため、厳密なプライバシー境界の導出は難しい。
既存の作業の多くは、統一されたローカルプライバシ設定に重点を置いているが、この作業は、各ユーザがパーソナライズされたローカルプライバシを必要とする、より実践的な設定のために、中央のプライバシバウンドを導出することに焦点を当てている。
シャッフル後にプライバシをバインドするには、まず、各ユーザが近隣のデータポイントのクローンを生成する確率をキャプチャする必要がある。
第二に、近隣のデータセット上のクローン数の2つの分布の区別不可能性を定量化する必要がある。
既存の作業は、確率を不正確にキャプチャするか、近隣のデータセット間の不明瞭さを過小評価する。
そこで我々は,任意のDP機構に対してより汎用的で厳密な境界を持つ,より精密な解析法を開発した。
まず、確率化器固有の視点から仮説テストによってクローン生成確率を導出し、その確率をより正確に評価する。
第二に、$f$-DPのコンテキストにおいて、分散の凸性を利用してより厳密なプライバシー境界を達成する不明瞭性を分析する。
理論的および数値的な結果は、文献の既存の結果を著しく上回っていることを示している。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Segmented Private Data Aggregation in the Multi-message Shuffle Model [6.436165623346879]
我々は、差分プライバシーのマルチメッセージシャッフルモデルにおいて、セグメント化されたプライベートデータアグリゲーションの研究を開拓した。
当社のフレームワークでは,ユーザに対するフレキシブルなプライバシ保護と,アグリゲーションサーバのための拡張ユーティリティを導入している。
提案手法は,既存手法と比較して推定誤差を約50%削減する。
論文 参考訳(メタデータ) (2024-07-29T01:46:44Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Robust and Differentially Private Mean Estimation [40.323756738056616]
異なるプライバシーは、米国国勢調査から商用デバイスで収集されたデータまで、さまざまなアプリケーションで標準要件として浮上しています。
このようなデータベースの数は、複数のソースからのデータからなり、それらすべてが信頼できるわけではない。
これにより、既存のプライベート分析は、腐敗したデータを注入する敵による攻撃に弱い。
論文 参考訳(メタデータ) (2021-02-18T05:02:49Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Privacy Amplification via Random Check-Ins [38.72327434015975]
Differentially Private Gradient Descent (DP-SGD) は、多くのアプリケーションにおいて、機密データを学習するための基本的な構成要素となっている。
本稿では,DP-SGD のような反復的手法を,多くのデバイス(クライアント)に分散したフェデレーションラーニング(FL)の設定において実施することに焦点を当てる。
当社の主なコントリビューションは,各クライアントがローカルかつ独立に行うランダムな参加決定にのみ依存する,Emphrandom Check-in分散プロトコルです。
論文 参考訳(メタデータ) (2020-07-13T18:14:09Z) - Successive Refinement of Privacy [38.20887036580742]
本研究は、局所微分プライバシー(LDP)を実現するために、どの程度ランダム性が必要かを検討する。
モチベーションシナリオは、複数のアナリストに複数のレベルのプライバシを提供することである。
各ユーザのプライバシーを維持しながら、ランダムなキーを時間の経過とともに再利用できないことを示す。
論文 参考訳(メタデータ) (2020-05-24T04:16:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。