論文の概要: Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models
- arxiv url: http://arxiv.org/abs/2407.18158v1
- Date: Thu, 25 Jul 2024 16:13:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:29:21.007707
- Title: Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models
- Title(参考訳): 大規模言語モデルにおける一般化境界のデータポイントとしてのアンロックトークン
- Authors: Sanae Lotfi, Yilun Kuang, Brandon Amos, Micah Goldblum, Marc Finzi, Andrew Gordon Wilson,
- Abstract要約: LLaMA2-70Bほどの大きさの大規模言語モデルの非空一般化境界を導出する。
我々の研究は、実際にデプロイされ、高品質なテキストを生成するモデルに対する最初の非空き境界を達成する。
- 参考スコア(独自算出の注目度): 79.70436109672599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) with billions of parameters excel at predicting the next token in a sequence. Recent work computes non-vacuous compression-based generalization bounds for LLMs, but these bounds are vacuous for large models at the billion-parameter scale. Moreover, these bounds are obtained through restrictive compression techniques, bounding compressed models that generate low-quality text. Additionally, the tightness of these existing bounds depends on the number of IID documents in a training set rather than the much larger number of non-IID constituent tokens, leaving untapped potential for tighter bounds. In this work, we instead use properties of martingales to derive generalization bounds that benefit from the vast number of tokens in LLM training sets. Since a dataset contains far more tokens than documents, our generalization bounds not only tolerate but actually benefit from far less restrictive compression schemes. With Monarch matrices, Kronecker factorizations, and post-training quantization, we achieve non-vacuous generalization bounds for LLMs as large as LLaMA2-70B. Unlike previous approaches, our work achieves the first non-vacuous bounds for models that are deployed in practice and generate high-quality text.
- Abstract(参考訳): 数十億のパラメータを持つ大規模言語モデル(LLM)は、シーケンス内の次のトークンを予測するのに優れている。
最近の研究は、LLMの非空圧縮に基づく一般化境界を計算するが、この境界は10億パラメータスケールの大規模モデルでは空である。
さらに、これらのバウンダリは、低品質テキストを生成する圧縮モデルのバウンダリによる制限圧縮技術によって得られる。
さらに、これらの既存の境界の厳密性は、非IID成分トークンの数よりもトレーニングセット内のIDDドキュメントの数に依存し、未解決のポテンシャルはより厳密な境界に残される。
本研究では, LLM トレーニングセットにおける多数のトークンの恩恵を受ける一般化境界を導出するために, マルティンガレの性質を用いる。
データセットは文書よりもはるかに多くのトークンを含んでいるので、一般化は許容できるだけでなく、制約の少ない圧縮スキームの恩恵を受ける。
モナール行列、クロネッカー分解、後学習量子化により、LLaMA2-70B の LLM に対して非空一般化境界が得られる。
従来のアプローチとは異なり、我々の研究は、実際にデプロイされ、高品質なテキストを生成するモデルに対する最初の非空き境界を達成する。
関連論文リスト
- I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models [20.070306492164427]
学習後の量子化は、大きな言語モデルの推論を加速する強力な技術として機能する。
既存の作業は、推論中にかなりの数の浮動小数点(FP)操作を必要とする。
この制限は、エッジとクラウドデバイス上の大きな言語モデルのデプロイを妨げる。
大規模言語モデルに適した整数のみの完全量子化PTQフレームワークであるI-LLMを提案する。
論文 参考訳(メタデータ) (2024-05-28T05:56:11Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - Training LLMs over Neurally Compressed Text [55.11828645767342]
本稿では,高度に圧縮されたテキスト上での大規模言語モデル(LLM)の訓練について検討する。
テキストをブロックに分割し,それぞれが同じビット長に圧縮する新しい圧縮手法であるEqual-Info Windowsを提案する。
提案手法は, 大規模化により向上し, パープレキシティと推論速度のベンチマークにおいて, バイトレベルのベースラインをはるかに上回る, ニューラルネットワークによる効果的な学習を実演する。
論文 参考訳(メタデータ) (2024-04-04T17:48:28Z) - IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact [46.32830393597601]
大規模言語モデル(LLM)は自然言語処理に優れるが、集中的な計算を必要とする。
本稿では,LLMにおける従来見過ごされていた外れ値について紹介する。
IntactKVを提案することで、完全精度モデルからピボットトークンのKVキャッシュを損失なく生成する。
論文 参考訳(メタデータ) (2024-03-02T16:05:26Z) - Non-Vacuous Generalization Bounds for Large Language Models [78.42762571499061]
事前訓練された大言語モデルに対して、最初の空でない一般化境界を提供する。
より大きいモデルはより優れた一般化バウンダリを持ち、より小さなモデルよりも圧縮可能であることを示す。
論文 参考訳(メタデータ) (2023-12-28T17:58:42Z) - TEAL: Tokenize and Embed ALL for Multi-modal Large Language Models [69.49978333446538]
TEALは任意のモダリティからの入力をトークンシーケンスとして扱うアプローチである。
トークンシーケンスを学習可能な埋め込み行列で結合埋め込み空間に埋め込む。
実験により、TEALはマルチモーダル理解を大幅に改善することが示された。
論文 参考訳(メタデータ) (2023-11-08T10:34:16Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
我々は、より小さな言語モデルの訓練を支援するために、大規模言語モデルの強力な生成力を利用する新しい手法、GenCoを導入する。
本手法では,LLMは2つの重要な方法で,より小さなモデルの自己学習ループにおいて重要な役割を果たす。
予測ラベルに条件付き入力テキストを書き換えることで、高品質なトレーニングペアの開発を支援する。
論文 参考訳(メタデータ) (2023-04-24T07:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。