論文の概要: Non-Vacuous Generalization Bounds for Large Language Models
- arxiv url: http://arxiv.org/abs/2312.17173v3
- Date: Wed, 17 Jul 2024 15:32:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 22:48:58.223029
- Title: Non-Vacuous Generalization Bounds for Large Language Models
- Title(参考訳): 大規模言語モデルのための非バス一般化境界
- Authors: Sanae Lotfi, Marc Finzi, Yilun Kuang, Tim G. J. Rudner, Micah Goldblum, Andrew Gordon Wilson,
- Abstract要約: 事前訓練された大言語モデルに対して、最初の空でない一般化境界を提供する。
より大きいモデルはより優れた一般化バウンダリを持ち、より小さなモデルよりも圧縮可能であることを示す。
- 参考スコア(独自算出の注目度): 78.42762571499061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern language models can contain billions of parameters, raising the question of whether they can generalize beyond the training data or simply parrot their training corpora. We provide the first non-vacuous generalization bounds for pretrained large language models (LLMs), indicating that language models are capable of discovering regularities that generalize to unseen data. In particular, we derive a compression bound that is valid for the unbounded log-likelihood loss using prediction smoothing, and we extend the bound to handle subsampling, accelerating bound computation by orders of magnitude on massive datasets. To achieve the extreme level of compression required for non-vacuous bounds, we devise SubLoRA, a simple low-dimensional nonlinear parameterization that leads to non-vacuous generalization bounds for models with nearly a billion parameters. Finally, we use our bounds to understand LLM generalization and find that larger models have better generalization bounds and are more compressible than smaller models.
- Abstract(参考訳): 現代の言語モデルには数十億のパラメータが含まれており、トレーニングデータを超えて一般化できるのか、単にトレーニングコーパスをパーローできるのかという疑問が提起されている。
本研究では,事前訓練された大言語モデル (LLM) に対して,非空の一般化境界を初めて提供し,言語モデルが未知のデータに一般化する正規性を発見できることを示す。
特に,予測平滑化を用いた非有界な対数損失に対して有効な圧縮バウンドを導出し,そのバウンドを拡張してサブサンプリング処理を行い,大規模データセット上での有界計算を桁違いに高速化する。
非空境界に必要となる極端な圧縮レベルを達成するために、約10億のパラメータを持つモデルに対して非空一般化境界をもたらす単純な低次元非線形パラメータ化であるSubLoRAを考案した。
最後に、我々は LLM 一般化を理解するために境界を使い、より大きなモデルはより優れた一般化境界を持ち、より小さなモデルよりも圧縮可能であることを発見した。
関連論文リスト
- Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models [79.70436109672599]
LLaMA2-70Bほどの大きさの大規模言語モデルの非空一般化境界を導出する。
我々の研究は、実際にデプロイされ、高品質なテキストを生成するモデルに対する最初の非空き境界を達成する。
論文 参考訳(メタデータ) (2024-07-25T16:13:58Z) - Slicing Mutual Information Generalization Bounds for Neural Networks [14.48773730230054]
我々は、ディープラーニングアルゴリズムに適した、より厳密な情報理論の一般化バウンダリを導入する。
我々の境界は、標準MI境界よりも有意な計算的および統計的優位性を提供する。
パラメータがランダムな部分空間に正確に横たわる必要がないアルゴリズムに解析を拡張します。
論文 参考訳(メタデータ) (2024-06-06T13:15:37Z) - Compressing Sentence Representation with maximum Coding Rate Reduction [0.0]
ほとんどの自然言語推論問題では、文表現は意味検索タスクに必要である。
スペースとハードウェアの制限のため、より小さなモデルを使用する場合には、同等の結果を得る必要がある。
複雑性と文埋め込みサイズを低減した新しい言語モデルは,セマンティック検索ベンチマークにおいて同等の結果が得られることを実証した。
論文 参考訳(メタデータ) (2023-04-25T09:23:43Z) - PAC-Bayes Compression Bounds So Tight That They Can Explain
Generalization [48.26492774959634]
線形部分空間におけるニューラルネットワークパラメータの量子化に基づく圧縮手法を開発した。
我々は、オッカムのカミソリをカプセル化した大きなモデルを、以前に知られていたよりもはるかに大きな範囲に圧縮できることを発見した。
論文 参考訳(メタデータ) (2022-11-24T13:50:16Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
この研究は、大規模構造化モデルの計算とメモリの複雑さを低減するための単純なアプローチを示す。
言語モデリング,ポリフォニック・ミュージック・モデリング,教師なし文法帰納法,ビデオ・モデリングのためのニューラルパラメータ構造モデルを用いた実験により,我々の手法は大規模状態空間における標準モデルの精度と一致することを示した。
論文 参考訳(メタデータ) (2022-01-08T00:47:50Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
特に,情報理論の原理を用いて,反復型SSLアルゴリズムのエミュレータ一般化誤差の振る舞いを理解することを目的とする。
我々の理論的結果は、クラス条件分散があまり大きくない場合、一般化誤差の上限は反復数とともに単調に減少するが、すぐに飽和することを示している。
論文 参考訳(メタデータ) (2021-10-03T05:38:49Z) - The Predictive Normalized Maximum Likelihood for Over-parameterized
Linear Regression with Norm Constraint: Regret and Double Descent [12.929639356256928]
現代の機械学習モデルは、予測規則の複雑さとその一般化能力の間のトレードオフに従わないことを示す。
最近提案された予測正規化最大値 (pNML) は、個々のデータに対するmin-max後悔解である。
我々は,pNML後悔を合成データ上でのポイントワイド学習可能性尺度として使用し,二重発生現象の予測に成功していることを示す。
論文 参考訳(メタデータ) (2021-02-14T15:49:04Z) - Intrinsic Dimensionality Explains the Effectiveness of Language Model
Fine-Tuning [52.624194343095304]
我々は、内在次元のレンズを通して微調整を分析することは、経験的および理論的直観をもたらすと論じる。
実験により、一般的な事前学習モデルは本質的な次元が極めて低いことを示す。
論文 参考訳(メタデータ) (2020-12-22T07:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。