LoRA-Pro: Are Low-Rank Adapters Properly Optimized?
- URL: http://arxiv.org/abs/2407.18242v1
- Date: Thu, 25 Jul 2024 17:57:12 GMT
- Title: LoRA-Pro: Are Low-Rank Adapters Properly Optimized?
- Authors: Zhengbo Wang, Jian Liang,
- Abstract summary: Low-Rank Adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning foundation models.
Despite its efficiency, LoRA often yields inferior performance compared to full fine-tuning.
We propose LoRA-Pro to bridge this performance gap.
- Score: 40.62010118950418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Rank Adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning foundation models by re-parameterizing the original matrix into the product of two low-rank matrices. Despite its efficiency, LoRA often yields inferior performance compared to full fine-tuning. In this paper, we propose LoRA-Pro to bridge this performance gap. Firstly, we delve into the optimization processes in LoRA and full fine-tuning. We reveal that while LoRA employs low-rank approximation, it neglects to approximate the optimization process of full fine-tuning. To address this, we introduce a novel concept called the "equivalent gradient." This virtual gradient makes the optimization process on the re-parameterized matrix equivalent to LoRA, which can be used to quantify the differences between LoRA and full fine-tuning. The equivalent gradient is derived from the gradients of matrices $A$ and $B$. To narrow the performance gap, our approach minimizes the differences between the equivalent gradient and the gradient obtained from full fine-tuning during the optimization process. By solving this objective, we derive optimal closed-form solutions for updating matrices $A$ and $B$. Our method constrains the optimization process, shrinking the performance gap between LoRA and full fine-tuning. Extensive experiments on natural language processing tasks validate the effectiveness of our method.
Related papers
- GraLoRA: Granular Low-Rank Adaptation for Parameter-Efficient Fine-Tuning [13.657093411434511]
Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-tuning (PEFT) of generative models.<n>We introduce a novel structure, Granular Low-Rank Adaptation (GraLoRA)<n>GraLoRA partitions weight matrices into sub-blocks, each with its own low-rank adapter.
arXiv Detail & Related papers (2025-05-26T06:48:20Z) - AltLoRA: Towards Better Gradient Approximation in Low-Rank Adaptation with Alternating Projections [33.897537326268356]
Low-Rank Adaptation (LoRA) has emerged as an effective technique for reducing memory overhead in fine-tuning large language models.<n>It often suffers from sub-optimal performance compared with full fine-tuning since the update is constrained in the low-rank space.<n>We propose AltLoRA, an alternating projection method that avoids the difficulties in gradient approximation brought by the joint update design.
arXiv Detail & Related papers (2025-05-18T15:10:38Z) - Make LoRA Great Again: Boosting LoRA with Adaptive Singular Values and Mixture-of-Experts Optimization Alignment [20.382810396966473]
Low-Rank Adaptation (LoRA) enables parameter-efficient fine-tuning for Large Language Models (LLMs)
Current methods optimize LoRA by initializing with static singular value decomposition subsets, leading to suboptimal leveraging of pre-trained knowledge.
We propose underlineGreat LunderlineoRunderlineA Mixture-of-Experunderlinet (GOAT)
GOAT integrates relevant priors using an SVD-structured MoE, and aligns optimization with full fine-tuned MoE by deriving a theoretical scaling factor
arXiv Detail & Related papers (2025-02-24T06:48:13Z) - LoRA-GGPO: Mitigating Double Descent in LoRA Fine-Tuning via Gradient-Guided Perturbation Optimization [12.504723188498]
Large Language Models (LLMs) have achieved remarkable success in natural language processing.
Low-Rank Adaptation (LoRA) has emerged as a practical solution by approximating parameter updates with low-rank matrices.
LoRA-GGPO is a novel method that leverages gradient and weight norms to generate targeted perturbations.
arXiv Detail & Related papers (2025-02-20T13:14:41Z) - BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.
We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.
Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.
We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning [13.823795660384262]
We propose a method, LoRA Silver Bullet or LoRA-SB, that approximates full fine-tuning within low-rank subspaces.
Our findings demonstrate that it is possible to simulate full fine-tuning in low-rank subspaces without sacrificing performance.
arXiv Detail & Related papers (2024-11-29T09:10:30Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.
Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.
LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - LoRA-GA: Low-Rank Adaptation with Gradient Approximation [5.685201910521295]
Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs.
LoRA offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters.
LoRA converges at a considerably slower rate compared to full fine-tuning, leading to increased overall compute and often worse test performance.
arXiv Detail & Related papers (2024-07-06T08:37:21Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models.
This paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges.
arXiv Detail & Related papers (2024-03-18T23:20:08Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers.
This paper presents the RunLoRA framework for efficient implementations of LoRA.
Experiments show up to 28% speedup on language modeling networks.
arXiv Detail & Related papers (2023-12-06T10:54:34Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.