論文の概要: Estimation of Distribution Algorithms with Matrix Transpose in Bayesian Learning
- arxiv url: http://arxiv.org/abs/2407.18257v1
- Date: Thu, 11 Jul 2024 12:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:35:56.037701
- Title: Estimation of Distribution Algorithms with Matrix Transpose in Bayesian Learning
- Title(参考訳): ベイズ学習における行列変換を用いた分布アルゴリズムの推定
- Authors: Dae-Won Kim, Song Ko, Bo-Yeong Kang,
- Abstract要約: ベイズ構造学習に特化して設計された新しい突然変異演算子,行列変換について述べる。
その結果, トランスポーション変異を持つEDAは従来のEDAよりも著しく優れた性能を示した。
- 参考スコア(独自算出の注目度): 1.7819574476785418
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimation of distribution algorithms (EDAs) constitute a new branch of evolutionary optimization algorithms, providing effective and efficient optimization performance in a variety of research areas. Recent studies have proposed new EDAs that employ mutation operators in standard EDAs to increase the population diversity. We present a new mutation operator, a matrix transpose, specifically designed for Bayesian structure learning, and we evaluate its performance in Bayesian structure learning. The results indicate that EDAs with transpose mutation give markedly better performance than conventional EDAs.
- Abstract(参考訳): 分散アルゴリズム (EDAs) は進化的最適化アルゴリズムの新たな分野であり、様々な研究領域において効率的かつ効率的な最適化性能を提供する。
近年の研究では、変異演算子を標準EDAに応用し、個体数の多様性を高める新しいEDAが提案されている。
ベイズ構造学習に特化して設計された新しい突然変異演算子,行列変換を行い,ベイズ構造学習におけるその性能を評価する。
その結果, トランスポーション変異を持つEDAは従来のEDAよりも著しく優れた性能を示した。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
ブラックボックス最適化問題は、多くの現実世界のアプリケーションで一般的な問題である。
これらの問題はインプット・アウトプット・インタラクションを通じて内部動作へのアクセスなしに最適化する必要がある。
このような問題に対処するために2つの広く使われている勾配のない最適化手法が用いられている。
本稿では,2つの手法間のモデル不確実性の類似点と相違点を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-03-21T13:59:19Z) - Deep Negative Correlation Classification [82.45045814842595]
既存のディープアンサンブル手法は、多くの異なるモデルをナビゲートし、予測を集約する。
深部負相関分類(DNCC)を提案する。
DNCCは、個々の推定器が正確かつ負の相関を持つ深い分類アンサンブルを生成する。
論文 参考訳(メタデータ) (2022-12-14T07:35:20Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Evolutionary Variational Optimization of Generative Models [0.0]
分散最適化と進化的アルゴリズムの2つの一般的な最適化アプローチをジェネレーションモデルのための学習アルゴリズムの導出に組み合わせます。
進化的アルゴリズムは変動境界を効果的かつ効率的に最適化できることを示す。
ゼロショット」学習のカテゴリでは、多くのベンチマーク設定で最先端の技術を大幅に改善するために進化的変動アルゴリズムを観察しました。
論文 参考訳(メタデータ) (2020-12-22T19:06:33Z) - Improving EEG Decoding via Clustering-based Multi-task Feature Learning [27.318646122939537]
機械学習は、EEGパターンをより良い復号精度に最適化する有望な技術を提供します。
既存のアルゴリズムは、真のEEGサンプル分布を捕捉する基礎となるデータ構造を効果的に探索しない。
クラスタリングに基づく脳波パターン復号のためのマルチタスク機能学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-12T13:31:53Z) - Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization [5.885238773559015]
革新」とは、最適化問題においてパレート最適化(PO)ソリューションの一部または全部の共通関係を学習するタスクである。
近年の研究では、非支配的なソリューションの時系列配列もまた、問題の特徴を学習するのに使える有能なパターンを持っていることが示されている。
本稿では,Pareto-Optimal 集合に向けて,集団構成員を前進させるために必要な設計変数の修正を学習する機械学習(ML-)支援モデル手法を提案する。
論文 参考訳(メタデータ) (2020-11-21T10:29:15Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。