論文の概要: Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design
- arxiv url: http://arxiv.org/abs/2407.18276v1
- Date: Tue, 23 Jul 2024 21:18:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 15:18:53.301062
- Title: Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design
- Title(参考訳): ローマは単一ステップで建設されなかった:LCMベースのチップ設計のための階層的プロンプト
- Authors: Andre Nakkab, Sai Qian Zhang, Ramesh Karri, Siddharth Garg,
- Abstract要約: 大言語モデル(LLM)は、ハードウェア記述言語(HDL)生成によるコンピュータハードウェア合成に有効である。
本稿では,効率的なステップワイズ設計手法を実現する階層的プロンプト技術一式を導入し,そのプロセスのための一般化可能な自動化パイプラインを開発する。
- 参考スコア(独自算出の注目度): 22.70660876673987
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are effective in computer hardware synthesis via hardware description language (HDL) generation. However, LLM-assisted approaches for HDL generation struggle when handling complex tasks. We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods, and develop a generalizable automation pipeline for the process. To evaluate these techniques, we present a benchmark set of hardware designs which have solutions with or without architectural hierarchy. Using these benchmarks, we compare various open-source and proprietary LLMs, including our own fine-tuned Code Llama-Verilog model. Our hierarchical methods automatically produce successful designs for complex hardware modules that standard flat prompting methods cannot achieve, allowing smaller open-source LLMs to compete with large proprietary models. Hierarchical prompting reduces HDL generation time and yields savings on LLM costs. Our experiments detail which LLMs are capable of which applications, and how to apply hierarchical methods in various modes. We explore case studies of generating complex cores using automatic scripted hierarchical prompts, including the first-ever LLM-designed processor with no human feedback.
- Abstract(参考訳): 大言語モデル(LLM)は、ハードウェア記述言語(HDL)生成によるコンピュータハードウェア合成に有効である。
しかし、複雑なタスクを扱う場合のHDL生成にLLMが支援するアプローチは難しかった。
本稿では,効率的なステップワイズ設計手法を実現する階層的プロンプト技術一式を導入し,そのプロセスのための一般化可能な自動化パイプラインを開発する。
これらの手法を評価するために,アーキテクチャ階層の有無に関わらず解決できるハードウェア設計のベンチマークセットを提案する。
これらのベンチマークを用いて、当社独自のCode Llama-Verilogモデルを含む、さまざまなオープンソースおよびプロプライエタリなLLMを比較します。
我々の階層的手法は、標準フラットプロンプト法では達成できない複雑なハードウェアモジュールの設計を自動生成し、より小さなオープンソース LLM が大規模なプロプライエタリなモデルと競合することを可能にする。
階層的プロンプトはHDL生成時間を短縮し、LLMコストの削減をもたらす。
実験では, LLMがどの用途に利用できるか, 階層的手法を様々なモードに適用する方法について詳述した。
人間のフィードバックを伴わない最初のLCM設計プロセッサを含む,自動スクリプティング階層プロンプトを用いた複雑なコア生成のケーススタディについて検討する。
関連論文リスト
- Improving Parallel Program Performance Through DSL-Driven Code Generation with LLM Optimizers [9.880183350366792]
計算処理をプロセッサにマッピングし、メモリを割り当てることは、並列プログラミングのパフォーマンスを最大化するために重要である。
これらのマッピング決定は、パフォーマンスエンジニアによって作成されたmapperと呼ばれる特殊な低レベルのシステムコードの開発を通じて管理される。
我々は,近年のLLMに基づくマッパー設計の進歩を生かしたアプローチを提案する。
10分以内で、科学的応用における人間の専門家設計を超えるマッパーを最大1.34倍のスピードアップで自動的に発見する。
論文 参考訳(メタデータ) (2024-10-21T04:08:37Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Open-domain Implicit Format Control for Large Language Model Generation [52.83173553689678]
大規模言語モデル(LLM)における制御生成のための新しいフレームワークを提案する。
本研究では、LLMがオープンドメイン、ワンショット制約に従う能力と、サンプル回答の形式を再現する能力について検討する。
また、出力品質を劣化させることなく、LLMのオープンドメインフォーマット制御を強化する教師付き微調整のためのデータセット収集手法を開発した。
論文 参考訳(メタデータ) (2024-08-08T11:51:45Z) - MTLLM: LLMs are Meaning-Typed Code Constructs [7.749453456370407]
本稿では,大規模言語モデル(LLM)をプログラミングに統合するための簡易なアプローチを提案する。
提案手法は,従来のプログラミング言語と自然言語を自動的に翻訳するために,既存のプログラムのセマンティック・リッチネスを利用する。
そこで本研究では,SOTA LLMソフトウェア開発ツールと比較し,本手法の完全機能および実運用レベルの実装について述べる。
論文 参考訳(メタデータ) (2024-05-14T21:12:01Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - RedCoast: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs [32.01139974519813]
大規模言語モデル(LLM)の分散トレーニングと推論を自動化するツールであるRedCoastを紹介する。
また,3つの関数の定義により,多様なMLパイプラインをカスタマイズする機構を提案する。
その結果、Redcoの実装は公式実装に比べてコード行数が大幅に減った。
論文 参考訳(メタデータ) (2023-10-25T04:32:35Z) - Revisiting Prompt Engineering via Declarative Crowdsourcing [16.624577543520093]
大規模言語モデル(LLM)は、テキスト形式でデータを解釈し、生成するのに驚くほど強力ですが、脆弱でエラーを起こします。
私たちは宣言的な急進的なエンジニアリングのビジョンを打ち出した。
ソート、実体分解、計算に関する予備的ケーススタディは、我々のアプローチの可能性を実証している。
論文 参考訳(メタデータ) (2023-08-07T18:04:12Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。