論文の概要: Combining Cognitive and Generative AI for Self-explanation in Interactive AI Agents
- arxiv url: http://arxiv.org/abs/2407.18335v1
- Date: Thu, 25 Jul 2024 18:46:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 15:09:00.980649
- Title: Combining Cognitive and Generative AI for Self-explanation in Interactive AI Agents
- Title(参考訳): 対話型AIエージェントにおける自己説明のための認知AIと生成AIの組み合わせ
- Authors: Shalini Sushri, Rahul Dass, Rhea Basappa, Hong Lu, Ashok Goel,
- Abstract要約: 本研究では、VERAのような対話型AIエージェントの自己説明のための認知AIと生成AIの収束について検討する。
認知AIの観点から、我々はVERAに、タスク-メソッド-知識(TMK)言語で表される独自の設計、知識、推論の機能モデルを与える。
生成AIの観点からは、ChatGPT、LangChain、Chain-of-Thoughtを使用して、VERA TMKモデルに基づいたユーザの質問に答える。
- 参考スコア(独自算出の注目度): 1.1259354267881174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Virtual Experimental Research Assistant (VERA) is an inquiry-based learning environment that empowers a learner to build conceptual models of complex ecological systems and experiment with agent-based simulations of the models. This study investigates the convergence of cognitive AI and generative AI for self-explanation in interactive AI agents such as VERA. From a cognitive AI viewpoint, we endow VERA with a functional model of its own design, knowledge, and reasoning represented in the Task--Method--Knowledge (TMK) language. From the perspective of generative AI, we use ChatGPT, LangChain, and Chain-of-Thought to answer user questions based on the VERA TMK model. Thus, we combine cognitive and generative AI to generate explanations about how VERA works and produces its answers. The preliminary evaluation of the generation of explanations in VERA on a bank of 66 questions derived from earlier work appears promising.
- Abstract(参考訳): Virtual Experimental Research Assistant(VERA)は、学習者が複雑な生態システムの概念モデルを構築し、エージェントベースのモデルシミュレーションを実験することを可能にする調査ベースの学習環境である。
本研究では、VERAのような対話型AIエージェントの自己説明のための認知AIと生成AIの収束について検討する。
認知AIの観点から、我々はVERAに、タスク-メソッド-知識(TMK)言語で表される独自の設計、知識、推論の機能モデルを与える。
生成AIの観点からは、ChatGPT、LangChain、Chain-of-Thoughtを使用して、VERA TMKモデルに基づいたユーザの質問に答える。
このように、認知と生成のAIを組み合わせて、VERAがどのように機能するかを説明し、その答えを生成する。
従来の研究から得られた66の質問の銀行上でのVERAにおける説明の生成に関する予備的評価は有望と思われる。
関連論文リスト
- The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures [0.0]
OpenAI-o1モデルは、人間のフィードバックから強化学習をトレーニングしたトランスフォーマーベースのAIである。
我々は、RLHFがモデルの内部推論プロセスにどのように影響し、意識的な経験をもたらす可能性があるかを検討する。
以上の結果から,OpenAI-o1モデルでは意識の側面が示され,AIの知覚に関する議論が進行中であることが示唆された。
論文 参考訳(メタデータ) (2024-09-18T06:06:13Z) - Cognition is All You Need -- The Next Layer of AI Above Large Language
Models [0.0]
我々は,大規模言語モデル以外のニューロシンボリック認知のためのフレームワークであるCognitive AIを紹介する。
我々は、認知AIがAGIのようなAI形態の進化に必須の先駆者であり、AGIは独自の確率論的アプローチでは達成できないと主張する。
我々は、大規模言語モデル、AIの採用サイクル、および商用の認知AI開発に関する議論で締めくくります。
論文 参考訳(メタデータ) (2024-03-04T16:11:57Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Explainability via Responsibility [0.9645196221785693]
本稿では,特定のトレーニングインスタンスをユーザに提供する,説明可能な人工知能へのアプローチを提案する。
我々は、AIエージェントの動作の説明を人間のユーザに提供する能力を近似することで、このアプローチを評価する。
論文 参考訳(メタデータ) (2020-10-04T20:41:03Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z) - How to Answer Why -- Evaluating the Explanations of AI Through Mental
Model Analysis [0.0]
人間中心のAI研究の鍵となる疑問は、ユーザーのメンタルモデルをどのように有効に調査するかである。
実験的な研究手法としてメンタルモデルが適切かどうかを評価する。
本稿では、人間中心の方法で説明可能なAIアプローチを評価するための模範的手法を提案する。
論文 参考訳(メタデータ) (2020-01-11T17:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。