Correlated quantum machines beyond the standard second law
- URL: http://arxiv.org/abs/2409.07899v1
- Date: Thu, 12 Sep 2024 10:09:20 GMT
- Title: Correlated quantum machines beyond the standard second law
- Authors: Milton Aguilar, Eric Lutz,
- Abstract summary: We derive exact generalized laws of quantum thermodynamics for arbitrary, time-periodic, open systems.
Our results provide a unified formalism to determine the efficiency of correlated microscopic thermal devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The laws of thermodynamics strongly restrict the performance of thermal machines. Standard thermodynamics, initially developed for uncorrelated macroscopic systems, does not hold for microscopic systems correlated with their environments. We here derive exact generalized laws of quantum thermodynamics for arbitrary, time-periodic, open systems that account for all possible correlations between all involved parties. We demonstrate the existence of two basic modes of engine operation: the usual thermal case, where heat is converted into work, and a novel athermal regime, where work is extracted from entropic resources, such as system-bath correlations. In the latter regime, the efficiency of a quantum engine is not bounded by the usual Carnot formula. Our results provide a unified formalism to determine the efficiency of correlated microscopic thermal devices.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Thermodynamics-Consistent Graph Neural Networks [50.0791489606211]
We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures.
The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy.
We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions.
arXiv Detail & Related papers (2024-07-08T06:58:56Z) - Heat currents in qubit systems [0.0]
We present explicit expressions for the heat currents in agreement with the second law of thermodynamics.
We also discuss issues regarding the possible presence of coherences in the steady state.
arXiv Detail & Related papers (2023-01-31T10:41:43Z) - Extending the laws of thermodynamics for arbitrary autonomous quantum
systems [0.0]
We show that energy exchanges between arbitrary quantum systems are structured by the laws of thermodynamics.
Our results open perspectives to understand and optimize the energetic performances of realistic quantum devices.
arXiv Detail & Related papers (2022-07-11T13:23:00Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Thermodynamics of a continuous quantum heat engine: Interplay between
population and coherence [0.0]
We present a detailed thermodynamic analysis of a three-level quantum heat engine coupled continuously to hot and cold reservoirs.
The system is driven by an oscillating external field and is described by the Markovian quantum master equation.
We calculate the heat, power, and efficiency of the system for the heat-engine operating regime and also examine the thermodynamic uncertainty relation.
arXiv Detail & Related papers (2021-07-13T09:52:01Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Szilard Engines as Quantum Thermodynamical Systems [1.3764085113103222]
We analyze an engine whose working fluid consists of a single quantum particle.
We show that the quantum engine obeys the Second Law.
However, the quantum engine does so via substantially different mechanisms.
arXiv Detail & Related papers (2020-10-27T22:33:13Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.