Adapting Mouse Pathological Model to Human Glomerular Lesion Segmentation
- URL: http://arxiv.org/abs/2407.18390v1
- Date: Thu, 25 Jul 2024 20:47:43 GMT
- Title: Adapting Mouse Pathological Model to Human Glomerular Lesion Segmentation
- Authors: Lining Yu, Mengmeng Yin, Ruining Deng, Quan Liu, Tianyuan Yao, Can Cui, Yu Wang, Yaohong Wang, Shilin Zhao, Haichun Yang, Yuankai Huo,
- Abstract summary: We introduce GLAM, a deep learning study for fine-grained segmentation of human kidney lesions using a mouse model.
We evaluate different learning strategies for segmenting human pathological lesions using zero-shot transfer learning and hybrid learning.
- Score: 13.209051765045512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Moving from animal models to human applications in preclinical research encompasses a broad spectrum of disciplines in medical science. A fundamental element in the development of new drugs, treatments, diagnostic methods, and in deepening our understanding of disease processes is the accurate measurement of kidney tissues. Past studies have demonstrated the viability of translating glomeruli segmentation techniques from mouse models to human applications. Yet, these investigations tend to neglect the complexities involved in segmenting pathological glomeruli affected by different lesions. Such lesions present a wider range of morphological variations compared to healthy glomerular tissue, which are arguably more valuable than normal glomeruli in clinical practice. Furthermore, data on lesions from animal models can be more readily scaled up from disease models and whole kidney biopsies. This brings up a question: ``\textit{Can a pathological segmentation model trained on mouse models be effectively applied to human patients?}" To answer this question, we introduced GLAM, a deep learning study for fine-grained segmentation of human kidney lesions using a mouse model, addressing mouse-to-human transfer learning, by evaluating different learning strategies for segmenting human pathological lesions using zero-shot transfer learning and hybrid learning by leveraging mouse samples. From the results, the hybrid learning model achieved superior performance.
Related papers
- Advancing Efficient Brain Tumor Multi-Class Classification -- New Insights from the Vision Mamba Model in Transfer Learning [18.20962008262757]
This study investigates the application of pre-trained models for brain tumor classification.
We fine-tuned several mainstream transfer learning models and applied them to the multi-class classification of brain tumors.
Notably, we introduced the Vision Mamba (Vim), a novel network architecture, and applied it for the first time in brain tumor classification.
arXiv Detail & Related papers (2024-10-29T09:08:57Z) - ConUNETR: A Conditional Transformer Network for 3D Micro-CT Embryonic
Cartilage Segmentation [13.497950682194704]
We propose a novel Transformer-based segmentation model with improved biological priors that better distills morphologically diverse information through conditional mechanisms.
Experiments on the mice cartilage dataset show the superiority of our new model compared to other competitive segmentation models.
arXiv Detail & Related papers (2024-02-06T04:30:49Z) - Reducing Intraspecies and Interspecies Covariate Shift in Traumatic
Brain Injury EEG of Humans and Mice Using Transfer Euclidean Alignment [4.264615907591813]
High variability across subjects poses a significant challenge when it comes to deploying machine learning models for classification tasks in the real world.
In such instances, machine learning models that exhibit exceptional performance on a specific dataset may not necessarily demonstrate similar proficiency when applied to a distinct dataset for the same task.
We introduce Transfer Euclidean Alignment - a transfer learning technique to tackle the problem of the robustness of human biomedical data for training deep learning models.
arXiv Detail & Related papers (2023-10-03T19:48:02Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Using machine learning on new feature sets extracted from 3D models of
broken animal bones to classify fragments according to break agent [53.796331564067835]
We present a new approach to fracture pattern analysis aimed at distinguishing bone fragments resulting from hominin bone breakage and those produced by carnivores.
This new method uses 3D models of fragmentary bone to extract a much richer dataset that is more transparent and replicable than feature sets previously used in fracture pattern analysis.
Supervised machine learning algorithms are properly used to classify bone fragments according to agent of breakage with average mean accuracy of 77% across tests.
arXiv Detail & Related papers (2022-05-20T20:16:21Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - Weakly-supervised learning for image-based classification of primary
melanomas into genomic immune subgroups [1.4585861543119112]
We develop deep learning models to classify gigapixel H&E stained pathology slides into immune subgroups.
We leverage a multiple-instance learning approach, which only requires slide-level labels and uses an attention mechanism to highlight regions of high importance to the classification.
arXiv Detail & Related papers (2022-02-23T13:57:35Z) - Pathological Analysis of Blood Cells Using Deep Learning Techniques [0.0]
A neural based network has been proposed for classification of blood cells images into various categories.
The performance of proposed model is better than existing standard architectures and work done by various researchers.
arXiv Detail & Related papers (2021-11-05T05:37:10Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.