Enhancing Robustness Of Digital Shadow For CO2 Storage Monitoring With Augmented Rock Physics Modeling
- URL: http://arxiv.org/abs/2502.07171v1
- Date: Tue, 11 Feb 2025 01:33:35 GMT
- Title: Enhancing Robustness Of Digital Shadow For CO2 Storage Monitoring With Augmented Rock Physics Modeling
- Authors: Abhinav Prakash Gahlot, Felix J. Herrmann,
- Abstract summary: Time-lapse seismic imaging is essential for tracking CO2 migration but often struggles to capture the complexities of multi-phase subsurface flow.
Digital Shadows (DS), leveraging machine learning-driven data assimilation techniques such as nonlinear Bayesian filtering and generative AI, provide a more detailed, uncertainty-aware monitoring approach.
This study demonstrates that augmenting forecast ensembles with diverse rock physics models mitigates the impact of incorrect assumptions and improves predictive accuracy.
- Score: 0.276240219662896
- License:
- Abstract: To meet climate targets, the IPCC underscores the necessity of technologies capable of removing gigatonnes of CO2 annually, with Geological Carbon Storage (GCS) playing a central role. GCS involves capturing CO2 and injecting it into deep geological formations for long-term storage, requiring precise monitoring to ensure containment and prevent leakage. Time-lapse seismic imaging is essential for tracking CO2 migration but often struggles to capture the complexities of multi-phase subsurface flow. Digital Shadows (DS), leveraging machine learning-driven data assimilation techniques such as nonlinear Bayesian filtering and generative AI, provide a more detailed, uncertainty-aware monitoring approach. By incorporating uncertainties in reservoir properties, DS frameworks improve CO2 migration forecasts, reducing risks in GCS operations. However, data assimilation depends on assumptions regarding reservoir properties, rock physics models, and initial conditions, which, if inaccurate, can compromise prediction reliability. This study demonstrates that augmenting forecast ensembles with diverse rock physics models mitigates the impact of incorrect assumptions and improves predictive accuracy, particularly in differentiating uniform versus patchy saturation models.
Related papers
- Advancing Geological Carbon Storage Monitoring With 3d Digital Shadow Technology [0.24578723416255752]
A Digital Shadow framework integrates field data, including seismic and borehole measurements, to track CO2 saturation over time.
Machine learning-assisted data assimilation techniques, such as generative AI, update a digital model of the CO2 plume.
This study extends the uncertainty-aware 2D Digital Shadow framework by incorporating 3D seismic imaging and reservoir modeling.
arXiv Detail & Related papers (2025-02-11T01:25:57Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Diffusion-based subsurface multiphysics monitoring and forecasting [4.2193475197905705]
We propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models.
This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties.
Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$$ monitoring.
arXiv Detail & Related papers (2024-07-25T23:04:37Z) - Inference of CO2 flow patterns -- a feasibility study [1.1249583407496222]
This study aims to develop a formulation capable of inferring flow patterns for regular and irregular flow from well and seismic data.
We are confident that the inferred uncertainty is reasonable because it correlates well with the observed errors.
This uncertainty stems from noise in the seismic data and from the lack of precise knowledge of the reservoir's fluid flow properties.
arXiv Detail & Related papers (2023-11-01T04:41:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - De-risking Carbon Capture and Sequestration with Explainable CO2 Leakage
Detection in Time-lapse Seismic Monitoring Images [2.021175152213487]
We introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models.
We also localize the leakage region of CO2 plumes by leveraging Class Activation Mapping methods.
arXiv Detail & Related papers (2022-12-16T17:22:51Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.