Homomorphic Encryption-Enabled Federated Learning for Privacy-Preserving Intrusion Detection in Resource-Constrained IoV Networks
- URL: http://arxiv.org/abs/2407.18503v1
- Date: Fri, 26 Jul 2024 04:19:37 GMT
- Title: Homomorphic Encryption-Enabled Federated Learning for Privacy-Preserving Intrusion Detection in Resource-Constrained IoV Networks
- Authors: Bui Duc Manh, Chi-Hieu Nguyen, Dinh Thai Hoang, Diep N. Nguyen,
- Abstract summary: This paper proposes a novel framework to address the data privacy issue for Federated Learning (FL)-based Intrusion Detection Systems (IDSs) in Internet-of-Vehicles (IoVs) with limited computational resources.
We first propose a highly-effective framework using homomorphic encryption to secure data that requires offloading to a centralized server for processing.
We develop an effective training algorithm tailored to handle the challenges of FL-based systems with encrypted data.
- Score: 20.864048794953664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to propose a novel framework to address the data privacy issue for Federated Learning (FL)-based Intrusion Detection Systems (IDSs) in Internet-of-Vehicles(IoVs) with limited computational resources. In particular, in conventional FL systems, it is usually assumed that the computing nodes have sufficient computational resources to process the training tasks. However, in practical IoV systems, vehicles usually have limited computational resources to process intensive training tasks, compromising the effectiveness of deploying FL in IDSs. While offloading data from vehicles to the cloud can mitigate this issue, it introduces significant privacy concerns for vehicle users (VUs). To resolve this issue, we first propose a highly-effective framework using homomorphic encryption to secure data that requires offloading to a centralized server for processing. Furthermore, we develop an effective training algorithm tailored to handle the challenges of FL-based systems with encrypted data. This algorithm allows the centralized server to directly compute on quantum-secure encrypted ciphertexts without needing decryption. This approach not only safeguards data privacy during the offloading process from VUs to the centralized server but also enhances the efficiency of utilizing FL for IDSs in IoV systems. Our simulation results show that our proposed approach can achieve a performance that is as close to that of the solution without encryption, with a gap of less than 0.8%.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
This study proposes an advanced Learning (FL) framework designed to enhance data privacy and security in IoT environments.
We integrate Decentralized Attribute-Based Encryption (DABE), Homomorphic Encryption (HE), Secure Multi-Party Computation (SMPC) and technology.
Unlike traditional FL, our framework enables secure, decentralized authentication and encryption directly on IoT devices.
arXiv Detail & Related papers (2024-10-26T19:30:53Z) - Blockchain-Enabled Variational Information Bottleneck for Data
Extraction Based on Mutual Information in Internet of Vehicles [34.63863606532729]
The Internet of Vehicles (IoV) network can address the issue of limited computing resources and data processing capabilities of individual vehicles.
Applying blockchain technology can establish secure data links within the IoV, solving the problems of insufficient computing resources for each vehicle and the security of data transmission over the network.
This paper introduces an innovative approach that integrates blockchain with VIB, referred to as BVIB, designed to lighten computational workloads and reinforce the security of the network.
arXiv Detail & Related papers (2024-09-20T17:30:19Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
arXiv Detail & Related papers (2024-02-02T16:39:08Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A Novel Federated Learning-Based IDS for Enhancing UAVs Privacy and Security [1.2999518604217852]
Unmanned aerial vehicles (UAVs) operating within Flying Ad-hoc Networks (FANETs) encounter security challenges due to the dynamic and distributed nature of these networks.
Previous studies predominantly focused on centralized intrusion detection, assuming a central entity responsible for storing and analyzing data from all devices.
This paper introduces the Federated Learning-based Intrusion Detection System (FL-IDS), addressing challenges encountered by centralized systems in FANETs.
arXiv Detail & Related papers (2023-12-07T08:50:25Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
Object detection is one of the key technologies in the Internet of Vehicles (IoV)
Current object detection methods are mostly based on centralized deep training, that is, the sensitive data obtained by edge devices need to be uploaded to the server.
We propose a federated learning-based framework, where well-trained local models are shared in the central server.
arXiv Detail & Related papers (2023-09-07T08:58:41Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.