A Universal Prompting Strategy for Extracting Process Model Information from Natural Language Text using Large Language Models
- URL: http://arxiv.org/abs/2407.18540v1
- Date: Fri, 26 Jul 2024 06:39:35 GMT
- Title: A Universal Prompting Strategy for Extracting Process Model Information from Natural Language Text using Large Language Models
- Authors: Julian Neuberger, Lars Ackermann, Han van der Aa, Stefan Jablonski,
- Abstract summary: We show that generative large language models (LLMs) can solve NLP tasks with very high quality without the need for extensive data.
Based on a novel prompting strategy, we show that LLMs are able to outperform state-of-the-art machine learning approaches.
- Score: 0.8899670429041453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past decade, extensive research efforts have been dedicated to the extraction of information from textual process descriptions. Despite the remarkable progress witnessed in natural language processing (NLP), information extraction within the Business Process Management domain remains predominantly reliant on rule-based systems and machine learning methodologies. Data scarcity has so far prevented the successful application of deep learning techniques. However, the rapid progress in generative large language models (LLMs) makes it possible to solve many NLP tasks with very high quality without the need for extensive data. Therefore, we systematically investigate the potential of LLMs for extracting information from textual process descriptions, targeting the detection of process elements such as activities and actors, and relations between them. Using a heuristic algorithm, we demonstrate the suitability of the extracted information for process model generation. Based on a novel prompting strategy, we show that LLMs are able to outperform state-of-the-art machine learning approaches with absolute performance improvements of up to 8\% $F_1$ score across three different datasets. We evaluate our prompting strategy on eight different LLMs, showing it is universally applicable, while also analyzing the impact of certain prompt parts on extraction quality. The number of example texts, the specificity of definitions, and the rigour of format instructions are identified as key for improving the accuracy of extracted information. Our code, prompts, and data are publicly available.
Related papers
- NLP4PBM: A Systematic Review on Process Extraction using Natural Language Processing with Rule-based, Machine and Deep Learning Methods [0.0]
This literature review studies the field of automated process extraction, i.e., transforming textual descriptions into structured processes using Natural Language Processing (NLP)
We found that Machine Learning (ML) / Deep Learning (DL) methods are being increasingly used for the NLP component.
In some cases, they were chosen for their suitability towards process extraction, and results show that they can outperform classic rule-based methods.
arXiv Detail & Related papers (2024-09-10T15:16:02Z) - Leveraging Large Language Models for Web Scraping [0.0]
This research investigates a general-purpose accurate data scraping recipe for RAG models designed for language generation.
To capture knowledge in a more modular and interpretable way, we use pre trained language models with a latent knowledge retriever.
arXiv Detail & Related papers (2024-06-12T14:15:15Z) - Leveraging Data Augmentation for Process Information Extraction [0.0]
We investigate the application of data augmentation for natural language text data.
Data augmentation is an important component in enabling machine learning methods for the task of business process model generation from natural language text.
arXiv Detail & Related papers (2024-04-11T06:32:03Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
We introduce TriSum, a framework for distilling large language models' text summarization abilities into a compact, local model.
Our method enhances local model performance on various benchmarks.
It also improves interpretability by providing insights into the summarization rationale.
arXiv Detail & Related papers (2024-03-15T14:36:38Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Surveying the Landscape of Text Summarization with Deep Learning: A
Comprehensive Review [2.4185510826808487]
Deep learning has revolutionized natural language processing (NLP) by enabling the development of models that can learn complex representations of language data.
Deep learning models for NLP typically use large amounts of data to train deep neural networks, allowing them to learn the patterns and relationships in language data.
Applying deep learning to text summarization refers to the use of deep neural networks to perform text summarization tasks.
arXiv Detail & Related papers (2023-10-13T21:24:37Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Prompt-Learning for Fine-Grained Entity Typing [40.983849729537795]
We investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot and zero-shot scenarios.
We propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types.
arXiv Detail & Related papers (2021-08-24T09:39:35Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
We focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process.
Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved.
We propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge.
arXiv Detail & Related papers (2020-09-28T10:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.