Skin Cancer Detection utilizing Deep Learning: Classification of Skin Lesion Images using a Vision Transformer
- URL: http://arxiv.org/abs/2407.18554v2
- Date: Sun, 25 Aug 2024 08:09:04 GMT
- Title: Skin Cancer Detection utilizing Deep Learning: Classification of Skin Lesion Images using a Vision Transformer
- Authors: Carolin Flosdorf, Justin Engelker, Igor Keller, Nicolas Mohr,
- Abstract summary: We employ a Vision Transformer (ViT) that has been developed based on the idea of a self-attention mechanism.
The ViT-L32 model achieves an accuracy of 91.57% and a melanoma recall of 58.54%, while ViT-L16 achieves an accuracy of 92.79% and a melanoma recall of 56.10%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin cancer detection still represents a major challenge in healthcare. Common detection methods can be lengthy and require human assistance which falls short in many countries. Previous research demonstrates how convolutional neural networks (CNNs) can help effectively through both automation and an accuracy that is comparable to the human level. However, despite the progress in previous decades, the precision is still limited, leading to substantial misclassifications that have a serious impact on people's health. Hence, we employ a Vision Transformer (ViT) that has been developed in recent years based on the idea of a self-attention mechanism, specifically two configurations of a pre-trained ViT. We generally find superior metrics for classifying skin lesions after comparing them to base models such as decision tree classifier and k-nearest neighbor (KNN) classifier, as well as to CNNs and less complex ViTs. In particular, we attach greater importance to the performance of melanoma, which is the most lethal type of skin cancer. The ViT-L32 model achieves an accuracy of 91.57% and a melanoma recall of 58.54%, while ViT-L16 achieves an accuracy of 92.79% and a melanoma recall of 56.10%. This offers a potential tool for faster and more accurate diagnoses and an overall improvement for the healthcare sector.
Related papers
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
This study focuses on osteosarcoma (OS), the most common bone cancer in children and adolescents, which affects the long bones of the arms and legs.
We propose a novel hybrid model that combines convolutional neural networks (CNN) and vision transformers (ViT) to improve diagnostic accuracy for OS.
The model achieved an accuracy of 99.08%, precision of 99.10%, recall of 99.28%, and an F1-score of 99.23%.
arXiv Detail & Related papers (2024-10-29T13:54:08Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification.
In this article, we inspect skin lesion classification problem using CNN techniques.
We present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework.
arXiv Detail & Related papers (2024-04-01T15:06:20Z) - Skin Cancer Segmentation and Classification Using Vision Transformer for
Automatic Analysis in Dermatoscopy-based Non-invasive Digital System [0.0]
This study introduces a groundbreaking approach to skin cancer classification, employing the Vision Transformer.
The Vision Transformer is a state-of-the-art deep learning architecture renowned for its success in diverse image analysis tasks.
The Segment Anything Model aids in precise segmentation of cancerous areas, attaining high IOU and Dice Coefficient.
arXiv Detail & Related papers (2024-01-09T11:22:54Z) - Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images [61.36288157482697]
Skin cancer is the most common type of cancer in the United States and is estimated to affect one in five Americans.
Recent advances have demonstrated strong performance on skin cancer detection, as exemplified by state of the art performance in the SIIM-ISIC Melanoma Classification Challenge.
This paper explores leveraging an efficient self-attention structure to detect skin cancer in skin lesion images and introduces a deep neural network design with DC-AC customized for skin cancer detection from skin lesion images.
arXiv Detail & Related papers (2023-11-20T10:45:39Z) - A Comprehensive Evaluation Study on Risk Level Classification of
Melanoma by Computer Vision on ISIC 2016-2020 Datasets [0.0]
Melanoma is the cause of 75% of skin cancer deaths.
Better detection of melanoma could have a positive impact on millions of people.
ISIC archive contains the largest publicly available collection of dermatoscopic images of skin lesions.
arXiv Detail & Related papers (2023-02-19T09:58:58Z) - Melanoma Skin Cancer and Nevus Mole Classification using Intensity Value
Estimation with Convolutional Neural Network [0.0]
Melanoma skin cancer is one of the most dangerous and life-threatening cancer.
Exposure to ultraviolet rays may damage the skin cell's DNA, which causes melanoma skin cancer.
It is difficult to detect and classify melanoma and nevus mole at the immature stages.
arXiv Detail & Related papers (2022-09-30T13:35:24Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.