論文の概要: Dynamic Language Group-Based MoE: Enhancing Efficiency and Flexibility for Code-Switching Speech Recognition
- arxiv url: http://arxiv.org/abs/2407.18581v1
- Date: Fri, 26 Jul 2024 08:03:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 14:00:25.403374
- Title: Dynamic Language Group-Based MoE: Enhancing Efficiency and Flexibility for Code-Switching Speech Recognition
- Title(参考訳): 動的言語グループに基づくMoE:コードスイッチング音声認識の効率性と柔軟性向上
- Authors: Hukai Huang, Shenghui Lu, Yahui Shan, He Qu, Wenhao Guan, Qingyang Hong, Lin Li,
- Abstract要約: Mixture of Experts (MoE)アプローチは、多言語とコードスイッチング(CS)の課題に対処するのに理想的だ。
本研究はバイリンガルシナリオとCSシナリオに最適化されたDLG-MoEを紹介する。
- 参考スコア(独自算出の注目度): 8.721337884357027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Mixture of Experts (MoE) approach is ideally suited for tackling multilingual and code-switching (CS) challenges due to its multi-expert architecture. This work introduces the DLG-MoE, which is optimized for bilingual and CS scenarios. Our novel Dynamic Language Group-based MoE layer features a language router with shared weights for explicit language modeling, while independent unsupervised routers within the language group handle attributes beyond language. This structure not only enhances expert extension capabilities but also supports dynamic top-k training, allowing for flexible inference across various top-k values and improving overall performance. The model requires no pre-training and supports streaming recognition, achieving state-of-the-art (SOTA) results with unmatched flexibility compared to other methods. The Code will be released.
- Abstract(参考訳): Mixture of Experts (MoE)アプローチは、マルチ言語とコードスイッチング(CS)の課題に取り組むのに理想的だ。
本研究はバイリンガルシナリオとCSシナリオに最適化されたDLG-MoEを紹介する。
我々の新しいDynamic Language GroupベースのMoEレイヤは、明示的な言語モデリングのための共有重みを持つ言語ルータを備えており、言語グループ内の独立した教師なしルータは、言語以外の属性を処理する。
この構造は、熟練した拡張能力を向上するだけでなく、動的トップkトレーニングもサポートし、様々なトップk値に対する柔軟な推論を可能にし、全体的なパフォーマンスを向上させる。
このモデルは事前トレーニングを必要とせず、ストリーミング認識をサポートし、最先端(SOTA)結果を達成する。
コードはリリースされる。
関連論文リスト
- Chunk-Distilled Language Modeling [25.238256586953487]
Chunk-Distilled Language Modeling (CD-LM)は、現在の大規模言語モデル(LLM)における2つの課題に対処するテキスト生成のアプローチである。
提案手法は,ディープネットワークベースのLCMと簡単な検索モジュールを組み合わせることで,単一のデコードステップでマルチトークンテキストチャンクを生成する。
論文 参考訳(メタデータ) (2024-12-31T08:32:15Z) - DeSTA2: Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
最近のエンドツーエンド言語モデル(SLM)は、大規模言語モデル(LLM)の機能に拡張されている。
音声とテキストのペアデータを生成するための,シンプルで効果的な自動処理手法を提案する。
本モデルでは,音声教育データを必要としない音声関連タスクの汎用性を示す。
論文 参考訳(メタデータ) (2024-09-30T07:01:21Z) - Boosting Code-Switching ASR with Mixture of Experts Enhanced Speech-Conditioned LLM [1.3089936156875277]
我々は,Mixture of Experts (MoE) ベースのコネクタと統合された音声条件付き大規模言語モデル (LLM) を提案する。
音声認識タスクへのLLMのテキスト生成能力を向上するためのIDIT機構を提案する。
また、複数の言語を効率的に管理するMoEアーキテクチャとのコネクタも提示する。
論文 参考訳(メタデータ) (2024-09-24T09:20:22Z) - Enhancing Code-Switching Speech Recognition with LID-Based Collaborative Mixture of Experts Model [12.030995417911296]
本研究では,専門家グループ間の協調的なメカニズムを活用するMixture of Experts(MoE)モデルであるCollaborative-MoEを提案する。
各言語専門家グループ内では、ゲーティングネットワークは、言語以外の属性に関するコラボレーションを促進するために教師なしの運営を行っている。
提案手法は,MoEモデルの特徴となる効率的な推論能力を,追加の事前学習を必要とせずに保持する。
論文 参考訳(メタデータ) (2024-09-03T16:53:38Z) - MoE-LPR: Multilingual Extension of Large Language Models through Mixture-of-Experts with Language Priors Routing [78.62611800987817]
大規模言語モデル(LLM)は、事前学習データに言語が不均等に分布するため、しばしば英語中心である。
そこで本稿では,MoE-LPR (Mixture-of-Experts with Language Priors) と呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T07:43:49Z) - ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning [72.90823351726374]
我々は,LLM間の双方向の注目を可能にする,柔軟でプラグアンドプレイな実装であるLULME(Unified framework for Large Language Model Embedding)を紹介した。
また,テキスト埋め込みタスクのLLMを向上する新しい微調整手法であるGRL(Generation-augmented Representation Learning)を提案する。
フレームワークの柔軟性と有効性を示すために、異なるバックボーンアーキテクチャを持つULLMEから事前訓練された3つのモデルをリリースする。
論文 参考訳(メタデータ) (2024-08-06T18:53:54Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - WavLLM: Towards Robust and Adaptive Speech Large Language Model [93.0773293897888]
本稿では,2つのエンコーダを持つ頑健で適応的な音声大言語モデルであるWavLLMと,プロンプト対応のLoRA重み付けアダプタを紹介する。
ASR, ST, SV, ERなどのタスクを含むユニバーサル音声ベンチマークにおいて提案手法の有効性を検証し, SQA用ガオカオ英語聴取理解セット, CoT 評価セットなどの特殊データセットに適用する。
論文 参考訳(メタデータ) (2024-03-31T12:01:32Z) - Language Models are Universal Embedders [48.12992614723464]
事前学習されたトランスフォーマーデコーダは、限定的な英語データに基づいて微調整された場合、普遍的に埋め込み可能であることを示す。
我々のモデルは、最小限のトレーニングデータにより、異なる埋め込みタスクにおける競争性能を達成する。
これらの結果は、強力な統合インバータを構築するための有望な道の証となる。
論文 参考訳(メタデータ) (2023-10-12T11:25:46Z) - VioLA: Unified Codec Language Models for Speech Recognition, Synthesis,
and Translation [91.39949385661379]
VioLAは1つの自動回帰トランスフォーマーデコーダのみのネットワークで、音声とテキストを含む様々なモーダルタスクを統合する。
まず、オフラインのニューラルエンコーダを用いて、全ての発話を個別のトークンに変換する。
さらに,タスクID(TID)と言語ID(LID)をモデルに統合し,異なる言語やタスクを扱うモデリング能力を向上させる。
論文 参考訳(メタデータ) (2023-05-25T14:39:47Z) - Mixture-of-Expert Conformer for Streaming Multilingual ASR [33.14594179710925]
本稿では,マルチランガル・コンバータによるマルチランガル・コンバータを提案する。
提案したMoE層は、専門家の数が増加するにつれて、一定の数のパラメータを活性化することで効率的な推論を提供する。
提案したモデルを12言語で評価し,ベースラインよりも平均11.9%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2023-05-25T02:16:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。