論文の概要: Understanding the role of FFNs in driving multilingual behaviour in LLMs
- arxiv url: http://arxiv.org/abs/2404.13855v1
- Date: Mon, 22 Apr 2024 03:47:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 15:26:21.395821
- Title: Understanding the role of FFNs in driving multilingual behaviour in LLMs
- Title(参考訳): LLMの多言語行動におけるFFNの役割の解明
- Authors: Sunit Bhattacharya, Ondřej Bojar,
- Abstract要約: 本稿では,大規模言語モデル群における多言語機能の詳細な分析を行う。
異なるレイヤにおけるモデルの多言語的振る舞いを探索する新しいメトリクスを導入し、多言語処理におけるアーキテクチャ選択の影響について光を当てる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilingualism in Large Language Models (LLMs) is an yet under-explored area. In this paper, we conduct an in-depth analysis of the multilingual capabilities of a family of a Large Language Model, examining its architecture, activation patterns, and processing mechanisms across languages. We introduce novel metrics to probe the model's multilingual behaviour at different layers and shed light on the impact of architectural choices on multilingual processing. Our findings reveal different patterns of multilinugal processing in the sublayers of Feed-Forward Networks of the models. Furthermore, we uncover the phenomenon of "over-layerization" in certain model configurations, where increasing layer depth without corresponding adjustments to other parameters may degrade model performance. Through comparisons within and across languages, we demonstrate the interplay between model architecture, layer depth, and multilingual processing capabilities of LLMs trained on multiple languages.
- Abstract(参考訳): LLM(Large Language Models)における多言語主義(multilingualism in Large Language Models)は、まだ未発見の分野である。
本稿では,大規模言語モデルのファミリーの多言語機能の詳細な分析を行い,そのアーキテクチャ,アクティベーションパターン,言語間の処理機構について検討する。
異なるレイヤにおけるモデルの多言語的振る舞いを探索する新しいメトリクスを導入し、多言語処理におけるアーキテクチャ選択の影響について光を当てる。
そこで本研究では,フィードフォワードネットワークのサブレイヤにおけるマルチリンガル処理のパターンを明らかにした。
さらに,特定のモデル構成における「過層化」現象を明らかにし,他のパラメータに対する調整を伴わない層深さの増加がモデル性能を低下させる可能性がある。
言語間の比較を通じて、複数の言語で訓練されたLLMのモデルアーキテクチャ、層深度、多言語処理能力の相互作用を実演する。
関連論文リスト
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
大きな言語モデル(LLM)は、翻訳、コード生成、推論といったタスクにまたがる様々な多言語機能を示す。
以前の評価では、その範囲を基本自然言語処理(NLP)や、独立した機能固有のタスクに制限することが多かった。
我々は、これらのベンチマークの有用性に関する以前の研究の監視に対処するため、大規模ベンチマークから利用可能な、合理的なベンチマークを選択するパイプラインを提案する。
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
マルチモーダル大言語モデル(MLLM)のための内適応アーキテクチャを導入する。
このアーキテクチャは、大きな言語モデル内の様々な深さで複数のマルチモーダルアダプタを組み込んで、テキスト指向のトランスフォーマー層との直接の相互作用を容易にする。
大規模な整列データを必要とする従来のフリーズ言語モデルとは異なり、提案アーキテクチャは小規模データセットにおいて優れた性能を実現することができる。
論文 参考訳(メタデータ) (2024-08-23T08:10:13Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - Unraveling Babel: Exploring Multilingual Activation Patterns of LLMs and Their Applications [24.18102112644796]
本研究では,多言語処理における大言語モデル(LLM)の内部ニューロン活性化パターンについて検討した。
専門家のアクティベーション周波数の差を利用してスパースアクティベーションとプルーニングを誘導する。
本研究は,スパースアクティベーションやモデルプルーニングなどの応用に新たな視点を提供する。
論文 参考訳(メタデータ) (2024-02-26T07:44:56Z) - Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond [16.913115978881866]
本稿では,単一ベクトル空間内において,より小さな言語モデルや多様なプロンプトを持つ大規模言語モデルを含む,様々なモデルからのタスク埋め込みである統合タスク埋め込み(FUTE)フレームワークを提案する。
このような一様性は、異なるモデル間の類似性の比較と分析を可能にし、マルチモデルシナリオにおける既存のタスク埋め込みメソッドの範囲と有用性を広げる。
論文 参考訳(メタデータ) (2024-02-22T13:13:31Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
多言語自己回帰モデルにおけるパラメータ効率細調整(PEFT)と言語間タスクの相互作用について検討する。
高速チューニングは、微調整よりも低リソース言語の性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T00:43:33Z) - Probing LLMs for Joint Encoding of Linguistic Categories [10.988109020181563]
大規模言語モデル(LLM)における言語カテゴリーの合同符号化をテストするためのフレームワークを提案する。
関連音声(POS)クラスと異なる(POSクラスと関連する構文依存関係)言語階層の双方で共同符号化の証拠を見いだした。
論文 参考訳(メタデータ) (2023-10-28T12:46:40Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Examining Scaling and Transfer of Language Model Architectures for
Machine Translation [51.69212730675345]
言語モデル(LM)は単一のレイヤのスタックで処理し、エンコーダ・デコーダモデル(EncDec)は入力と出力の処理に別々のレイヤスタックを使用する。
機械翻訳において、EncDecは長年好まれてきたアプローチであるが、LMの性能についての研究はほとんどない。
論文 参考訳(メタデータ) (2022-02-01T16:20:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。