Multi-Agent Deep Reinforcement Learning for Energy Efficient Multi-Hop STAR-RIS-Assisted Transmissions
- URL: http://arxiv.org/abs/2407.18627v1
- Date: Fri, 26 Jul 2024 09:35:50 GMT
- Title: Multi-Agent Deep Reinforcement Learning for Energy Efficient Multi-Hop STAR-RIS-Assisted Transmissions
- Authors: Pei-Hsiang Liao, Li-Hsiang Shen, Po-Chen Wu, Kai-Ten Feng,
- Abstract summary: We propose the novel architecture of multi-hop STAR-RISs to achieve a wider range of full-plane service coverage.
The proposed architecture achieves the highest energy efficiency compared to mode switching based STAR-RISs, conventional RISs and deployment without RISs or STAR-RISs.
- Score: 9.462149599416263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) provides a promising way to expand coverage in wireless communications. However, limitation of single STAR-RIS inspire us to integrate the concept of multi-hop transmissions, as focused on RIS in existing research. Therefore, we propose the novel architecture of multi-hop STAR-RISs to achieve a wider range of full-plane service coverage. In this paper, we intend to solve active beamforming of the base station and passive beamforming of STAR-RISs, aiming for maximizing the energy efficiency constrained by hardware limitation of STAR-RISs. Furthermore, we investigate the impact of the on-off state of STAR-RIS elements on energy efficiency. To tackle the complex problem, a Multi-Agent Global and locAl deep Reinforcement learning (MAGAR) algorithm is designed. The global agent elevates the collaboration among local agents, which focus on individual learning. In numerical results, we observe the significant improvement of MAGAR compared to the other benchmarks, including Q-learning, multi-agent deep Q network (DQN) with golbal reward, and multi-agent DQN with local rewards. Moreover, the proposed architecture of multi-hop STAR-RISs achieves the highest energy efficiency compared to mode switching based STAR-RISs, conventional RISs and deployment without RISs or STAR-RISs.
Related papers
- Energy Efficient Fair STAR-RIS for Mobile Users [10.497111272905917]
We introduce a new parameter known as the subsurface assignment variable, which determines the number of STAR-RIS elements allocated to each user.
We then formulate a novel optimization problem by concurrently optimizing the phase shifts of the STAR-RIS and subsurface assignment variable.
We show that the proposed method can achieve fairly high and nearly equal data rates for all users in both the transmission and reflection spaces.
arXiv Detail & Related papers (2024-07-09T13:56:59Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - DRL Enabled Coverage and Capacity Optimization in STAR-RIS Assisted
Networks [55.0821435415241]
A new paradigm in wireless communications, how to analyze the coverage and capacity performance of STAR-RISs becomes essential but challenging.
To solve the coverage and capacity optimization problem in STAR-RIS assisted networks, a multi-objective policy optimization (MO-PPO) algorithm is proposed.
In order to improve the performance of the MO-PPO algorithm, two update strategies, i.e., action-value-based update strategy (AVUS) and loss function-based update strategy (LFUS) are investigated.
arXiv Detail & Related papers (2022-09-01T14:54:36Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Energy-Efficient Design for a NOMA assisted STAR-RIS Network with Deep
Reinforcement Learning [78.50920340621677]
Simultaneous transmitting and reconfigurable intelligent surfaces (STAR-RISs) has been considered as a promising auxiliary device to enhance the performance of wireless network.
In this paper, the energy efficiency (EE) problem for a non-orthogonal multiple access (NOMA) network is investigated.
A deep deterministic policy-based algorithm is proposed to maximize the EE by jointly optimizing the transmission beamforming vectors at the base station and the gradient matrices at the STAR-RIS.
arXiv Detail & Related papers (2021-11-30T15:01:19Z) - Channel Estimation and Hybrid Architectures for RIS-Assisted
Communications [6.677785070549226]
Reconfigurable intelligent surfaces (RISs) are considered as potential technologies for the upcoming sixth-generation (6G) wireless communication system.
Benefits brought by deploying one or multiple RISs include increased spectrum and energy efficiency, enhanced connectivity, extended communication coverage, reduced complexity at transceivers.
arXiv Detail & Related papers (2021-04-14T20:28:09Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.