Resource Allocation for RIS-Assisted CoMP-NOMA Networks using Reinforcement Learning
- URL: http://arxiv.org/abs/2504.00975v2
- Date: Sat, 19 Apr 2025 12:03:00 GMT
- Title: Resource Allocation for RIS-Assisted CoMP-NOMA Networks using Reinforcement Learning
- Authors: Muhammad Umer, Muhammad Ahmed Mohsin, Huma Ghafoor, Syed Ali Hassan,
- Abstract summary: This thesis explores the synergistic integration of three transformative technologies: STAR-RIS, CoMP, and NOMA.<n> Driven by the ever-increasing demand for higher data rates, improved spectral efficiency, and expanded coverage in the evolving landscape of 6G development, this research investigates the potential of these technologies to revolutionize future wireless networks.
- Score: 8.13094889619588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This thesis delves into the forefront of wireless communication by exploring the synergistic integration of three transformative technologies: STAR-RIS, CoMP, and NOMA. Driven by the ever-increasing demand for higher data rates, improved spectral efficiency, and expanded coverage in the evolving landscape of 6G development, this research investigates the potential of these technologies to revolutionize future wireless networks. The thesis analyzes the performance gains achievable through strategic deployment of STAR-RIS, focusing on mitigating inter-cell interference, enhancing signal strength, and extending coverage to cell-edge users. Resource sharing strategies for STAR-RIS elements are explored, optimizing both transmission and reflection functionalities. Analytical frameworks are developed to quantify the benefits of STAR-RIS assisted CoMP-NOMA networks under realistic channel conditions, deriving key performance metrics such as ergodic rates and outage probabilities. Additionally, the research delves into energy-efficient design approaches for CoMP-NOMA networks incorporating RIS, proposing novel RIS configurations and optimization algorithms to achieve a balance between performance and energy consumption. Furthermore, the application of Deep Reinforcement Learning (DRL) techniques for intelligent and adaptive optimization in aerial RIS-assisted CoMP-NOMA networks is explored, aiming to maximize network sum rate while meeting user quality of service requirements. Through a comprehensive investigation of these technologies and their synergistic potential, this thesis contributes valuable insights into the future of wireless communication, paving the way for the development of more efficient, reliable, and sustainable networks capable of meeting the demands of our increasingly connected world.
Related papers
- Federated Deep Reinforcement Learning for Energy Efficient Multi-Functional RIS-Assisted Low-Earth Orbit Networks [14.638758375246642]
We propose a novel network architecture that deploys the multifunctional reconfigurable intelligent surface (MF-RIS) in low-Earth orbit (LEO)<n>Unlike traditional RIS with only signal reflection, MF-RIS can reflect, amplify and harvest signals.<n>We show that the proposed LEO-MF-RIS architecture has demonstrated its effectiveness.
arXiv Detail & Related papers (2025-01-19T15:31:05Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - DRL Enabled Coverage and Capacity Optimization in STAR-RIS Assisted
Networks [55.0821435415241]
A new paradigm in wireless communications, how to analyze the coverage and capacity performance of STAR-RISs becomes essential but challenging.
To solve the coverage and capacity optimization problem in STAR-RIS assisted networks, a multi-objective policy optimization (MO-PPO) algorithm is proposed.
In order to improve the performance of the MO-PPO algorithm, two update strategies, i.e., action-value-based update strategy (AVUS) and loss function-based update strategy (LFUS) are investigated.
arXiv Detail & Related papers (2022-09-01T14:54:36Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
A novel model is proposed for the coverage and capacity optimization of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) assisted networks.
A loss function-based update strategy is the core point, which is able to calculate weights for both loss functions of coverage and capacity by a min-norm solver at each update.
The numerical results demonstrate that the investigated update strategy outperforms the fixed weight-based MO algorithms.
arXiv Detail & Related papers (2022-04-13T13:52:22Z) - Energy-Efficient Design for a NOMA assisted STAR-RIS Network with Deep
Reinforcement Learning [78.50920340621677]
Simultaneous transmitting and reconfigurable intelligent surfaces (STAR-RISs) has been considered as a promising auxiliary device to enhance the performance of wireless network.
In this paper, the energy efficiency (EE) problem for a non-orthogonal multiple access (NOMA) network is investigated.
A deep deterministic policy-based algorithm is proposed to maximize the EE by jointly optimizing the transmission beamforming vectors at the base station and the gradient matrices at the STAR-RIS.
arXiv Detail & Related papers (2021-11-30T15:01:19Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Channel Estimation and Hybrid Architectures for RIS-Assisted
Communications [6.677785070549226]
Reconfigurable intelligent surfaces (RISs) are considered as potential technologies for the upcoming sixth-generation (6G) wireless communication system.
Benefits brought by deploying one or multiple RISs include increased spectrum and energy efficiency, enhanced connectivity, extended communication coverage, reduced complexity at transceivers.
arXiv Detail & Related papers (2021-04-14T20:28:09Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.