論文の概要: Automatic Detection of Moral Values in Music Lyrics
- arxiv url: http://arxiv.org/abs/2407.18787v1
- Date: Fri, 26 Jul 2024 14:49:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 13:09:10.252574
- Title: Automatic Detection of Moral Values in Music Lyrics
- Title(参考訳): 音楽歌詞におけるモラル値の自動検出
- Authors: Vjosa Preniqi, Iacopo Ghinassi, Julia Ive, Kyriaki Kalimeri, Charalampos Saitis,
- Abstract要約: 道徳的価値は、情報を評価し、意思決定し、重要な社会問題に関する判断を形成する上で、基本的な役割を担います。
2人の専門家が注釈付けした200曲のリアル歌詞の道徳的価値を検出するために,2,721の合成歌詞を微調整した変換器ベース言語モデル(BERT)のセットを課題とした。
MFTアノテーション付きソーシャルメディアテキストを微調整したBERTやゼロショット(GPT-4)分類など,一連のベースラインに対する予測能力の評価を行った。
提案したモデルでは、平均F1重み付きスコアが0.8で、実験全体で最高の精度が得られた。
- 参考スコア(独自算出の注目度): 4.747987317906765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Moral values play a fundamental role in how we evaluate information, make decisions, and form judgements around important social issues. The possibility to extract morality rapidly from lyrics enables a deeper understanding of our music-listening behaviours. Building on the Moral Foundations Theory (MFT), we tasked a set of transformer-based language models (BERT) fine-tuned on 2,721 synthetic lyrics generated by a large language model (GPT-4) to detect moral values in 200 real music lyrics annotated by two experts.We evaluate their predictive capabilities against a series of baselines including out-of-domain (BERT fine-tuned on MFT-annotated social media texts) and zero-shot (GPT-4) classification. The proposed models yielded the best accuracy across experiments, with an average F1 weighted score of 0.8. This performance is, on average, 5% higher than out-of-domain and zero-shot models. When examining precision in binary classification, the proposed models perform on average 12% higher than the baselines.Our approach contributes to annotation-free and effective lyrics morality learning, and provides useful insights into the knowledge distillation of LLMs regarding moral expression in music, and the potential impact of these technologies on the creative industries and musical culture.
- Abstract(参考訳): 道徳的価値は、情報を評価し、意思決定し、重要な社会問題に関する判断を形成する上で、基本的な役割を担います。
歌詞から道徳性を迅速に抽出する可能性によって、音楽聴取行動のより深い理解がもたらされる。
MFT(Moral Foundations Theory)に基づいて,大言語モデル(GPT-4)が生成する2,721の合成歌詞に変換言語モデル(BERT)を微調整し,2人の専門家が注釈付けした200のリアル音楽歌詞の道徳的価値を検出する。
提案したモデルでは、平均F1重み付きスコアが0.8で、実験全体で最高の精度が得られた。
このパフォーマンスは平均して、ドメイン外およびゼロショットモデルよりも5%高い。
両分類の精度を検討する際には,提案したモデルは基準よりも平均12%高い精度で動作し,本手法は注釈のない効果的な歌詞モラル学習に寄与し,音楽のモラル表現に関するLLMの知識蒸留や,これらの技術が創造産業や音楽文化に与える影響について有用な知見を提供する。
関連論文リスト
- The Moral Foundations Weibo Corpus [0.0]
道徳的な感情は、オンライン環境とオフライン環境の両方に影響し、行動スタイルと相互作用パターンを形成する。
既存のコーパスは価値はあるものの、しばしば言語的な制限に直面している。
このコーパスは、Weiboに関する25,671の中国語のコメントで構成され、6つの多様な話題領域を含んでいる。
論文 参考訳(メタデータ) (2024-11-14T17:32:03Z) - Evaluation of pretrained language models on music understanding [0.0]
その結果, 言語モデル(LLM)は, 1) アクセシビリティ, 2) 否定をモデル化できないこと, 3) 特定の単語の存在に対する感受性に悩まされていることがわかった。
我々はこれらの特性を三重項に基づく精度として定量化し、階層的オントロジーにおいてラベルの相対的類似性をモデル化する能力を評価した。
比較的高い精度が報告されているにもかかわらず、6つのモデルすべてに矛盾があることは明らかであり、既製のLLMは使用前に音楽に適応する必要があることを示唆している。
論文 参考訳(メタデータ) (2024-09-17T14:44:49Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - MoralBERT: A Fine-Tuned Language Model for Capturing Moral Values in Social Discussions [4.747987317906765]
道徳的価値は、情報を評価し、意思決定し、重要な社会問題に関する判断を形成する上で、基本的な役割を担います。
自然言語処理(NLP)の最近の進歩は、人文コンテンツにおいて道徳的価値を測ることができることを示している。
本稿では、社会談話における道徳的感情を捉えるために微調整された言語表現モデルであるMoralBERTを紹介する。
論文 参考訳(メタデータ) (2024-03-12T14:12:59Z) - What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts
and Rationales for Disambiguating Defeasible Social and Moral Situations [48.686872351114964]
道徳的または倫理的な判断は、それらが起こる特定の文脈に大きく依存する。
我々は,行動が多かれ少なかれ道徳的に容認されるような,根底的な文脈を提供するという,デファシブルな道徳的推論を導入する。
文脈化と論理の1.2M項目からなる高品質なデータセットを115Kデファシブルな道徳行動のために蒸留する。
論文 参考訳(メタデータ) (2023-10-24T00:51:29Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
倫理的AIシステムの開発には倫理的判断が不可欠である。
一般的なアプローチは主にボトムアップ方式で実装されており、モラルに関するクラウドソースの意見に基づいて、大量の注釈付きデータを使用してモデルをトレーニングする。
本研究は、学際的な研究から確立された道徳理論を用いて道徳的推論を行うために、言語モデル(LM)を操る柔軟なトップダウンフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T15:57:32Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - "More Than Words": Linking Music Preferences and Moral Values Through
Lyrics [2.3204178451683264]
本研究では,歌詞にテキスト分析手法を適用し,音楽の嗜好と道徳的価値の関係について検討した。
われわれは1,386人のサイコメトリックスコアを、Facebook Page Likesから登場した好みの音楽アーティストのトップ5の歌詞に合わせる。
機械学習フレームワークは、回帰アプローチを利用して、道徳的価値を推定するための叙述的特徴の予測力を評価するように設計された。
論文 参考訳(メタデータ) (2022-09-02T16:58:52Z) - Melody-Conditioned Lyrics Generation with SeqGANs [81.2302502902865]
本稿では,SeqGAN(Sequence Generative Adversarial Networks)に基づく,エンドツーエンドのメロディ条件付き歌詞生成システムを提案する。
入力条件が評価指標に悪影響を及ぼすことなく,ネットワークがより有意義な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-10-28T02:35:40Z) - Aligning AI With Shared Human Values [85.2824609130584]
私たちは、正義、幸福、義務、美徳、常識道徳の概念にまたがる新しいベンチマークであるETHICSデータセットを紹介します。
現在の言語モデルは、基本的な人間の倫理的判断を予測できる有望だが不完全な能力を持っている。
私たちの研究は、今日の機械倫理の進歩を示しており、人間の価値観に合わせたAIへの足掛かりを提供する。
論文 参考訳(メタデータ) (2020-08-05T17:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。