論文の概要: A Scalable Quantum Non-local Neural Network for Image Classification
- arxiv url: http://arxiv.org/abs/2407.18906v1
- Date: Fri, 26 Jul 2024 17:58:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 12:39:55.411413
- Title: A Scalable Quantum Non-local Neural Network for Image Classification
- Title(参考訳): 画像分類のためのスケーラブル量子非局所ニューラルネットワーク
- Authors: Sparsh Gupta, Debanjan Konar, Vaneet Aggarwal,
- Abstract要約: 本稿では、量子非局所ニューラルネットワーク(QNL-Net)と呼ばれる、量子古典的スケーラブルな非局所ニューラルネットワークを紹介する。
提案したQNL-Netは、多数の入力特徴の同時処理を可能にするために、固有の量子並列性に依存している。
我々は,提案したQNL-Netを,MNISTとCIFAR-10の2値分類と比較した。
- 参考スコア(独自算出の注目度): 31.58287931295479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-local operations play a crucial role in computer vision enabling the capture of long-range dependencies through weighted sums of features across the input, surpassing the constraints of traditional convolution operations that focus solely on local neighborhoods. Non-local operations typically require computing pairwise relationships between all elements in a set, leading to quadratic complexity in terms of time and memory. Due to the high computational and memory demands, scaling non-local neural networks to large-scale problems can be challenging. This article introduces a hybrid quantum-classical scalable non-local neural network, referred to as Quantum Non-Local Neural Network (QNL-Net), to enhance pattern recognition. The proposed QNL-Net relies on inherent quantum parallelism to allow the simultaneous processing of a large number of input features enabling more efficient computations in quantum-enhanced feature space and involving pairwise relationships through quantum entanglement. We benchmark our proposed QNL-Net with other quantum counterparts to binary classification with datasets MNIST and CIFAR-10. The simulation findings showcase our QNL-Net achieves cutting-edge accuracy levels in binary image classification among quantum classifiers while utilizing fewer qubits.
- Abstract(参考訳): 非局所的な操作は、局所的にのみ焦点を絞った従来の畳み込み操作の制約を超越して、入力全体の特徴の重み付けによる長距離依存の捕捉を可能にするコンピュータビジョンにおいて重要な役割を担っている。
非局所的な操作は通常、セット内のすべての要素間のペアワイズ関係の計算を必要とし、時間とメモリの2次的な複雑さをもたらす。
計算とメモリの要求が高いため、非局所ニューラルネットワークを大規模に拡張することは困難である。
本稿では、パターン認識を強化するために、量子非局所ニューラルネットワーク(QNL-Net)と呼ばれる、量子古典的スケーラブルな非局所ニューラルネットワークを紹介する。
提案したQNL-Netは、多くの入力特徴の同時処理を可能にするために、固有な量子並列性に依存しており、量子強化された特徴空間におけるより効率的な計算を可能にし、量子絡み合いによるペア関係を含む。
我々は,提案したQNL-Netを,MNISTとCIFAR-10の2値分類と比較した。
シミュレーションの結果,QNL-Netは量子分類器間の2値画像分類における最先端の精度レベルを実現し,量子ビットの削減を実現している。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Optimizing Quantum Convolutional Neural Network Architectures for Arbitrary Data Dimension [2.9396076967931526]
量子畳み込みニューラルネットワーク(QCNN)は量子機械学習において有望なアプローチである。
量子リソースの割り当てを最適化しながら任意の入力データ次元を処理できるQCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-28T02:25:12Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
量子拡張畳み込みニューラルネットワーク(QDCNN)と呼ばれる新しいハイブリッド量子古典型アルゴリズムを提案する。
提案手法は,現代のディープラーニングアルゴリズムに広く応用されている拡張畳み込みの概念を,ハイブリッドニューラルネットワークの文脈にまで拡張する。
提案したQDCNNは,量子畳み込み過程において,計算コストを低減しつつ,より大きなコンテキストを捉えることができる。
論文 参考訳(メタデータ) (2021-10-29T10:24:34Z) - Exponentially Many Local Minima in Quantum Neural Networks [9.442139459221785]
量子ニューラルネットワーク(QNN)は、古典的ニューラルネットワークと同じような約束のため、重要な量子アプリケーションである。
我々は,QNNの損失関数のランドスケープを定量的に調査し,トレーニング用に単純だが極めて難しいQNNインスタンスのクラスを同定する。
我々は、我々の構成が、典型的な勾配ベースの回路で実際に難しい事例となることを実証的に確認する。
論文 参考訳(メタデータ) (2021-10-06T03:23:44Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
効率的な分散コンピューティングは、リソース要求タスクを解決するためのスケーラブルな戦略を提供する。
量子リソースはこのタスクに適しており、古典的手法よりも優れた明確な戦略を提供する。
我々は,ベルのような不等式に,新たなコミュニケーション複雑性タスクのクラスを関連付けることができることを証明した。
論文 参考訳(メタデータ) (2021-06-11T18:00:09Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。