論文の概要: Context-Masked Meta-Prompting for Privacy-Preserving LLM Adaptation in Finance
- arxiv url: http://arxiv.org/abs/2407.18920v2
- Date: Wed, 24 Sep 2025 15:30:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 23:07:30.857368
- Title: Context-Masked Meta-Prompting for Privacy-Preserving LLM Adaptation in Finance
- Title(参考訳): 金融におけるプライバシー保護LLM適応のためのコンテキストマップ型メタプロンピング
- Authors: Sayash Raaj Hiraou,
- Abstract要約: 本稿では,Large Language Models (LLMs) にプロンプトや秘密のコンテキストを公開せずに,ハードプロンプトを最適化する反復的メタプロンプト手法を提案する。
我々は,抽出財務Q&AのSQuAD,ニュース要約のCNN/DailyMail,クライアントインタラクション要約のSAMSumなどの金融タスクのプロキシとして機能する公開データセットに対するアプローチを評価する。
この作業は、LLMを金融アプリケーションに適用し、重要なプライバシと監査可能性の基準を維持しながら、実用的で低コストな戦略を強調します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing reliance on Large Language Models (LLMs) in sensitive domains like finance necessitates robust methods for privacy preservation and regulatory compliance. This paper presents an iterative meta-prompting methodology designed to optimise hard prompts without exposing proprietary or confidential context to the LLM. Through a novel regeneration process involving feeder and propagation methods, we demonstrate significant improvements in prompt efficacy. Evaluated on public datasets serving as proxies for financial tasks such as SQuAD for extractive financial Q&A, CNN/DailyMail for news summarisation, and SAMSum for client interaction summarisation, our approach, utilising GPT-3.5 Turbo, achieved a 103.87% improvement in ROUGE-L F1 for question answering. This work highlights a practical, low-cost strategy for adapting LLMs to financial applications while upholding critical privacy and auditability standards, offering a compelling case for its relevance in the evolving landscape of generative AI in finance.
- Abstract(参考訳): 金融のような機密性の高いドメインにおけるLLM(Large Language Models)への依存度の増加は、プライバシー保護と規制遵守のための堅牢な方法を必要とする。
本稿では,LLMにプロプライエタリな,あるいは機密性の高いコンテキストを公開せずに,ハードプロンプトを最適化する反復的メタプロンプト手法を提案する。
摂食法と伝播法を併用した新しい再生プロセスを通じて, 迅速な効果の顕著な改善が示された。
SQuAD、ニュース要約用CNN/DailyMail、クライアントインタラクション要約用SAMSumなどの金融業務用プロキシとして機能する公開データセットを評価した結果、質問応答用ROUGE-L F1では103.87%向上した。
この研究は、LLMを金融アプリケーションに適用し、重要なプライバシと監査可能性の基準を守りながら、金融における生成AIの進化する状況にその関連性を示す実用的な低コスト戦略を強調している。
関連論文リスト
- IPO: Interpretable Prompt Optimization for Vision-Language Models [40.83071220530289]
本稿では,シンプルだが解釈可能なプロンプト(IPO)を紹介する。
IPOは大規模言語モデル(LLM)を使用してテキストプロンプトを動的に生成する。
画像記述を生成することで、視覚的内容の条件付けに大型マルチモーダルモデル(LMM)を組み込む。
論文 参考訳(メタデータ) (2024-10-20T14:10:22Z) - Visual Prompting in Multimodal Large Language Models: A Survey [95.75225825537528]
MLLM(Multimodal large language model)は、視覚機能を備えた事前訓練された多言語モデル(LLM)である。
ビジュアルプロンプトはよりきめ細かな自由形式のビジュアルインストラクションのために現れた。
本稿では,視覚的プロンプト,即時生成,構成的推論,即時学習に焦点をあてる。
論文 参考訳(メタデータ) (2024-09-05T08:47:34Z) - Using Grammar Masking to Ensure Syntactic Validity in LLM-based Modeling Tasks [0.996023506058745]
文法マスキング(Grammar masking)は、与えられた文脈自由文法に対して構文的に正しいモデルを生成するための大きな言語モデルを導くために用いられる。
文法マスキングは,複数の言語モデルのモデリング能力を劇的に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-07-08T17:19:59Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - Prompting Large Language Models with Audio for General-Purpose Speech Summarization [13.415189715216354]
大規模言語モデル(LLM)の処理と推論機能を活用した音声要約フレームワークを提案する。
本稿では,LLM が解釈可能なトークン表現に変換する音声エンコーダと命令調整 LLM を組み合わせたエンドツーエンドシステムを提案する。
論文 参考訳(メタデータ) (2024-06-10T02:04:28Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
プロンプティングは、特定の自然言語処理タスクに大規模言語モデル(LLM)を適用するための主流パラダイムとなっている。
このアプローチは、LLMの振る舞いをガイドし、制御するために、モデル推論と人間の努力のさらなる計算負担をもたらす。
本稿では, 今後の研究の方向性を明らかにするため, 促進, 効率的な促進のための進歩を概説する。
論文 参考訳(メタデータ) (2024-04-01T12:19:08Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - CLAMP: Contrastive LAnguage Model Prompt-tuning [89.96914454453791]
このように適応すれば,大規模な言語モデルでも優れた画像分類性能が得られることを示す。
我々のアプローチは最先端のmLLMを13%上回り、カスタムテキストモデルによる対照的な学習をわずかに上回ります。
論文 参考訳(メタデータ) (2023-12-04T05:13:59Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcotは、大規模言語モデルを呼び出すためのコンテキスト内学習技術である。
ゼロショットシナリオでは、一貫した正しいステップワイズプロンプトを達成する。
数学的推論とコモンセンス推論の実験を行う。
論文 参考訳(メタデータ) (2023-11-22T17:24:21Z) - Context-Aware Prompt Tuning for Vision-Language Model with
Dual-Alignment [15.180715595425864]
我々は、事前学習された大言語モデル(LLM)を組み込むことで、視覚言語モデルの迅速な学習を改善する新しい手法を提案する。
DuAl-PTでは、明示的および暗黙的両方のコンテキストモデリングの恩恵を受けながら、よりコンテキスト対応のプロンプトを学習することを提案する。
実証的には、DuAl-PTは、数ショットの認識とベース・ツー・ニューな一般化で、11のダウンストリームデータセット上で優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-09-08T06:51:15Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z) - A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT [1.2640882896302839]
本稿では,大規模言語モデル(LLM)をソフトウェア開発タスクの自動化に適用する,迅速なエンジニアリングに関する研究に貢献する。
さまざまなドメインに適応できるように、プロンプトを構造化するためのパターンを文書化するためのフレームワークを提供する。
第3に、複数のパターンからプロンプトを構築する方法を説明し、他のプロンプトパターンと組み合わせることで恩恵を受けるプロンプトパターンを説明する。
論文 参考訳(メタデータ) (2023-02-21T12:42:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。