LitSearch: A Retrieval Benchmark for Scientific Literature Search
- URL: http://arxiv.org/abs/2407.18940v2
- Date: Wed, 16 Oct 2024 18:37:15 GMT
- Title: LitSearch: A Retrieval Benchmark for Scientific Literature Search
- Authors: Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya Goyal, Danqi Chen, Tianyu Gao,
- Abstract summary: We introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers.
All LitSearch questions were manually examined or edited by experts to ensure high quality.
We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% absolute difference in recall@5.
- Score: 48.593157851171526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Literature search questions, such as "Where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason across entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions manually written by authors about their recently published papers. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% absolute difference in recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by up to 32 recall points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.
Related papers
- PseudoSeer: a Search Engine for Pseudocode [18.726136894285403]
A novel pseudocode search engine is designed to facilitate efficient retrieval and search of academic papers containing pseudocode.
By leveraging snippets, the system enables users to search across various facets of a paper, such as the title, abstract, author information, and code snippets.
A weighted BM25-based ranking algorithm is used by the search engine, and factors considered when prioritizing search results are described.
arXiv Detail & Related papers (2024-11-19T16:58:03Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
Many complex real-world queries require in-depth reasoning to identify relevant documents.
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.
Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - Tree Search for Language Model Agents [69.43007235771383]
We propose an inference-time search algorithm for LM agents to perform exploration and multi-step planning in interactive web environments.
Our approach is a form of best-first tree search that operates within the actual environment space.
It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks.
arXiv Detail & Related papers (2024-07-01T17:07:55Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - PaperQA: Retrieval-Augmented Generative Agent for Scientific Research [41.9628176602676]
We present PaperQA, a RAG agent for answering questions over the scientific literature.
PaperQA is an agent that performs information retrieval across full-text scientific articles, assesses the relevance of sources and passages, and uses RAG to provide answers.
We also introduce LitQA, a more complex benchmark that requires retrieval and synthesis of information from full-text scientific papers across the literature.
arXiv Detail & Related papers (2023-12-08T18:50:20Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
'LADR' (Lexically-Accelerated Dense Retrieval) is a simple-yet-effective approach that improves the efficiency of existing dense retrieval models.
LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
arXiv Detail & Related papers (2023-07-31T15:44:26Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.