Analysis of the Reasoning with Redundant Information Provided Ability of
Large Language Models
- URL: http://arxiv.org/abs/2310.04039v1
- Date: Fri, 6 Oct 2023 06:20:06 GMT
- Title: Analysis of the Reasoning with Redundant Information Provided Ability of
Large Language Models
- Authors: Wenbei Xie
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive capabilities across a range of natural language processing tasks.
To address this gap, a new form of Question-Answering (QA) task, termed Reasoning with Redundant Information Provided (RRIP), is introduced.
This study evaluates two popular LLMs, LlaMA2-13B-chat and generative pre-trained transformer 3.5 (GPT-3.5), contrasting their performance on traditional QA tasks against RRIP tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have demonstrated
impressive capabilities across a range of natural language processing tasks,
especially in reasoning, a cornerstone for achieving Artificial General
Intelligence (AGI). However, commonly used benchmarks may not fully encapsulate
the inferential abilities of these models in real-world scenarios. To address
this gap, a new form of Question-Answering (QA) task, termed Reasoning with
Redundant Information Provided (RRIP), is introduced. The study designed a
modified version of the grade school math 8K (GSM-8K) dataset which has several
variants focusing on different attributes of redundant information. This
investigation evaluates two popular LLMs, LlaMA2-13B-chat and generative
pre-trained transformer 3.5 (GPT-3.5), contrasting their performance on
traditional QA tasks against the RRIP tasks. Findings indicate that while these
models achieved moderate success on standard QA benchmarks, their performance
notably declines when assessed on RRIP tasks. The study not only highlights the
limitations of current LLMs in handling redundant information but also suggests
that future training of these models should focus on incorporating redundant
information into the training data to increase the performance on RRIP tasks.
Related papers
- Towards Robust Extractive Question Answering Models: Rethinking the Training Methodology [0.34530027457862006]
Previous research has shown that existing models, when trained on EQA datasets that include unanswerable questions, demonstrate a significant lack of robustness.
Our proposed training method includes a novel loss function for the EQA problem and challenges an implicit assumption present in numerous EQA datasets.
Our models exhibit significantly enhanced robustness against two types of adversarial attacks, with a performance decrease of only about a third compared to the default models.
arXiv Detail & Related papers (2024-09-29T20:35:57Z) - Rephrase and Contrast: Fine-Tuning Language Models for Enhanced Understanding of Communication and Computer Networks [13.829525575305206]
This paper introduces our Rephrase and Contrast (RaC) framework, an efficient fine-tuning framework.
RaC enhances LLMs' comprehension and critical thinking abilities by incorporating question reformulation and contrastive analysis.
To efficiently construct the dataset for RaC fine-tuning, we develop a GPT-assisted data mining method for generating high-quality question-answer pairs.
arXiv Detail & Related papers (2024-09-21T16:04:43Z) - P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task [94.08478298711789]
Embodied Everyday Task is a popular task in the embodied AI community.
Natural language instructions often lack explicit task planning.
Extensive training is required to equip models with knowledge of the task environment.
arXiv Detail & Related papers (2024-09-17T15:29:34Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
Massive Multitask Agent Understanding (MMAU) benchmark features comprehensive offline tasks that eliminate the need for complex environment setups.
It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics.
With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents.
arXiv Detail & Related papers (2024-07-18T00:58:41Z) - Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks [22.66167973623777]
Large Language Models (LLMs) have transformed NLP with their remarkable In-context Learning (ICL) capabilities.
This paper investigates whether LLMs can generalize from labeled examples of predefined tasks to novel tasks.
We show that cross-task prompting leads to a remarkable performance boost of 107% for LLaMA-2 7B, 18.6% for LLaMA-2 13B, and 3.2% for GPT 3.5 on average over zero-shot prompting.
arXiv Detail & Related papers (2024-05-17T05:20:49Z) - Enhancing Textbook Question Answering Task with Large Language Models
and Retrieval Augmented Generation [3.948068081583197]
This paper proposes a methodology that handle the out-of-domain scenario in Textbook question answering (TQA)
Through supervised fine-tuning of the LLM model Llama-2 and the incorporation of RAG, our architecture outperforms the baseline, achieving a 4.12% accuracy improvement on validation set and 9.84% on test set for non-diagram multiple-choice questions.
arXiv Detail & Related papers (2024-02-05T11:58:56Z) - Information Association for Language Model Updating by Mitigating
LM-Logical Discrepancy [68.31760483418901]
Large Language Models(LLMs) struggle with providing current information due to the outdated pre-training data.
Existing methods for updating LLMs, such as knowledge editing and continual fine-tuning, have significant drawbacks in generalizability of new information.
We identify the core challenge behind these drawbacks: the LM-logical discrepancy featuring the difference between language modeling probabilities and logical probabilities.
arXiv Detail & Related papers (2023-05-29T19:48:37Z) - Learning to Perturb Word Embeddings for Out-of-distribution QA [55.103586220757464]
We propose a simple yet effective DA method based on a noise generator, which learns to perturb the word embedding of the input questions and context without changing their semantics.
We validate the performance of the QA models trained with our word embedding on a single source dataset, on five different target domains.
Notably, the model trained with ours outperforms the model trained with more than 240K artificially generated QA pairs.
arXiv Detail & Related papers (2021-05-06T14:12:26Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
retrieval-augmented generation models combine pre-trained parametric and non-parametric memory for language generation.
We show that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
arXiv Detail & Related papers (2020-05-22T21:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.