論文の概要: Towards a Cyber Information Ontology
- arxiv url: http://arxiv.org/abs/2407.18998v1
- Date: Fri, 26 Jul 2024 14:59:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 20:12:16.018838
- Title: Towards a Cyber Information Ontology
- Title(参考訳): サイバー情報オントロジーを目指して
- Authors: David Limbaugh, Mark Jensen, John Beverley,
- Abstract要約: サイバーライクなファイルシステムとトップレベルのデータ融合の間のインターフェースとして機能することを意図した一連の用語を導入する。
これらの用語は、サイバー情報管理をユニークなものにすることに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a set of terms that are intended to act as an interface between cyber ontologies (like a file system ontology or a data fusion ontology) and top- and mid-level ontologies, specifically Basic Formal Ontology and the Common Core Ontologies. These terms center on what makes cyberinformation management unique: numerous acts of copying items of information, the aggregates of copies that result from those acts, and the faithful members of those aggregates that represent all other members.
- Abstract(参考訳): 本稿では,サイバーオントロジー(ファイルシステムオントロジーやデータ融合オントロジーなど)と上層および中層オントロジー,特に基本形式オントロジーと共通コアオントロジーのインターフェースとして機能することを目的とした用語について紹介する。
これらの用語は、情報項目をコピーする数多くの行為、それらの行為から生じるコピーの集合、および他のすべてのメンバーを表すそれらの集約の忠実なメンバーなど、サイバー情報管理をユニークなものにすることに焦点を当てている。
関連論文リスト
- Data-driven Coreference-based Ontology Building [48.995395445597225]
参照解決は、伝統的に個々の文書理解のコンポーネントとして使用される。
よりグローバルな視点で、すべてのドキュメントレベルのコア参照関係から、ドメインについて何が学べるかを探求します。
コードとともに、クリエイティブ・コモンズライセンスの下でコア参照チェーンをリリースします。
論文 参考訳(メタデータ) (2024-10-22T14:30:40Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Incremental hierarchical text clustering methods: a review [49.32130498861987]
本研究の目的は,階層的および漸進的クラスタリング技術の解析である。
本研究の主な貢献は、文書クラスタリングのテキスト化を目的とした、2010年から2018年にかけて出版された研究で使用されるテクニックの組織化と比較である。
論文 参考訳(メタデータ) (2023-12-12T22:27:29Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - O-Dang! The Ontology of Dangerous Speech Messages [53.15616413153125]
O-Dang!:The Ontology of Dangerous Speech Messages, a systematic and interoperable Knowledge Graph (KG)
O-Dang!は、Lingguistic Linked Open Dataコミュニティで共有されている原則に従って、イタリアのデータセットを構造化されたKGにまとめ、整理するように設計されている。
ゴールド・スタンダードとシングル・アノテータのラベルをKGにエンコードするモデルを提供する。
論文 参考訳(メタデータ) (2022-07-13T11:50:05Z) - Document Structure aware Relational Graph Convolutional Networks for
Ontology Population [1.076210145983805]
文書コーパスにおける概念間の存在論的関係の学習における文書構造の役割を考察する。
超音速発見と説明可能性から着想を得た本手法は,RCNモデルのスタンドアロンモデルよりも約15ポイント精度が高い。
論文 参考訳(メタデータ) (2021-04-27T02:50:39Z) - Ontology-based Feature Selection: A Survey [0.6767885381740952]
調査の目的は、テキスト、画像、データベース、専門知識からの知識抽出の重要な側面に関する洞察を提供することである。
提示された例は、医療、観光、機械工学、土木工学など、さまざまなアプリケーションドメインにまたがる。
論文 参考訳(メタデータ) (2021-04-15T19:03:31Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z) - On the Merging of Domain-Specific Heterogeneous Ontologies using Wordnet
and Web Pattern-based Queries [0.0]
我々は,コミュニティ間の共通ドメインの形式的,明示的,共有的な概念化と理解の提供を目指しています。
オントロジーは特定の領域の概念とその制約を明示的に定義することができる。
論文 参考訳(メタデータ) (2020-04-30T05:03:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。