論文の概要: Effective Large Language Model Debugging with Best-first Tree Search
- arxiv url: http://arxiv.org/abs/2407.19055v1
- Date: Fri, 26 Jul 2024 19:26:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 20:02:28.876812
- Title: Effective Large Language Model Debugging with Best-first Tree Search
- Title(参考訳): 最優先木探索による効率的な大規模言語モデルデバッグ
- Authors: Jialin Song, Jonathan Raiman, Bryan Catanzaro,
- Abstract要約: 大きな言語モデル(LLM)は、コード生成タスクの約束を示す。
LLMはバグの発見と修正を一貫して行うことはできない。
本研究では,LLMが自己回帰と探索によってコードをデバッグするアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 27.68711322875045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) show promise in code generation tasks. However, their code-writing abilities are often limited in scope: while they can successfully implement simple functions, they struggle with more complex tasks. A fundamental difference with how an LLM writes code, compared to a human programmer, is that it cannot consistently spot and fix bugs. Debugging is a crucial skill for programmers and it enables iterative code refinement towards a correct implementation. In this work, we propose a novel algorithm to enable LLMs to debug their code via self-reflection and search where a model attempts to identify its previous mistakes. Our key contributions are 1) a best-first tree search algorithm with self-reflections (BESTER) that achieves state-of-the-art Pass@1 in three code generation benchmarks. BESTER maintains its superiority when we measure pass rates taking into account additional inference costs incurred by tree search. 2) A novel interpretability study on what self-reflections attend to in buggy programs and how they impact bug fixes, which provides a deeper understanding of the debugging process. 3) An extensive study on when self-reflections are effective in finding bugs.
- Abstract(参考訳): 大きな言語モデル(LLM)は、コード生成タスクの約束を示す。
しかし、それらのコード記述能力はスコープに限られることが多く、単純な関数をうまく実装できるが、より複雑なタスクに苦しむ。
LLMが人間のプログラマと比べてどのようにコードを書くかという根本的な違いは、バグの発見と修正を一貫して行えないことです。
デバッグはプログラマにとって重要なスキルであり、正しい実装に向けて反復的なコード修正を可能にする。
本研究では,LLMが自己回帰と探索によってコードをデバッグできる新しいアルゴリズムを提案する。
私たちの主な貢献は
1) 3つのコード生成ベンチマークにおいて、最先端のPass@1を達成する自己回帰型木探索アルゴリズム(BESTER)を提案する。
BESTERは,木探索による追加推論コストを考慮したパスレートの測定において,その優位性を維持している。
2)バギープログラムにおける自己回帰の関与とバグ修正への影響に関する新たな解釈可能性の研究により,デバッグプロセスの理解を深めることができた。
3) 自己回帰がいつバグ発見に有効かに関する広範な研究。
関連論文リスト
- BugSpotter: Automated Generation of Code Debugging Exercises [22.204802715829615]
本稿では,問題記述からバグコードを生成するツールであるBugSpotterを紹介する。
学生は失敗するテストケースを設計することでBugSpotterと対話する。
論文 参考訳(メタデータ) (2024-11-21T16:56:33Z) - CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
大規模言語モデル(LLM)は、生成されたコードを自己定義し、自律的に改善する機能を持つエージェントとして機能する。
コード生成プロセスの異なる段階における探索空間を効率的に探索するLLMエージェントのためのフレームワークであるCodeTreeを提案する。
具体的には、異なるコーディング戦略を明示的に探求し、対応するコーディングソリューションを生成し、その後、ソリューションを洗練するために統合されたツリー構造を採用しました。
論文 参考訳(メタデータ) (2024-11-07T00:09:54Z) - Steering Large Language Models between Code Execution and Textual Reasoning [22.279107036500083]
テキスト推論は、数学、論理学、最適化、探索における課題を伴うタスクの解決に固有の制限がある。
最近リリースされたOpenAI GPT Code InterpreterとAutoGenのようなマルチエージェントフレームワークは、コード生成と実行を統合するのに顕著な能力を示している。
LLMのコード/テキスト生成を良くし、顕著な改善を実現するための3つの方法を提案する。
論文 参考訳(メタデータ) (2024-10-04T15:44:47Z) - No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair [9.562123938545522]
ツールネームは、様々なコード検索、生成、修復ツールを統合することができ、これら3つの研究領域を初めて組み合わせることができる。
例えば、CodeLlamaは62.53%の改善で267のプログラミング問題を解決するのに役立ちます。
論文 参考訳(メタデータ) (2024-09-05T06:24:29Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [10.510325069289324]
LLMが生成するコードの信頼性向上を目的とした自己補充手法を提案する。
当社のアプローチは,初期コード内の潜在的なバグを特定するために,対象とする検証質問(VQ)に基づいています。
本手法は,LLMをターゲットとするVQと初期コードで再プロンプトすることで,潜在的なバグの修復を試みる。
論文 参考訳(メタデータ) (2024-05-22T19:02:50Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
本稿では,大規模言語モデルで予測プログラムを数発のデモでデバッグする自己デバッグを提案する。
論文 参考訳(メタデータ) (2023-04-11T10:43:43Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z) - Generating Bug-Fixes Using Pretrained Transformers [11.012132897417592]
実世界のgithubからマイニングしたjavaメソッドのバグの検出と修正を学ぶ,データ駆動型プログラム修復手法を導入する。
ソースコードプログラムの事前トレーニングは,スクラッチからの教師ありトレーニングに比べて,33%のパッチ数を改善することを示す。
我々は,標準精度評価基準を非削除および削除のみの修正に洗練し,我々の最良モデルが従来よりも75%多くの非削除修正を生成することを示す。
論文 参考訳(メタデータ) (2021-04-16T05:27:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。