論文の概要: No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair
- arxiv url: http://arxiv.org/abs/2409.03267v1
- Date: Thu, 5 Sep 2024 06:24:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 21:40:47.918105
- Title: No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair
- Title(参考訳): No Man is a Island: コード検索、コード生成、プログラム修復による完全な自動プログラミングを目指す
- Authors: Quanjun Zhang, Chunrong Fang, Ye Shang, Tongke Zhang, Shengcheng Yu, Zhenyu Chen,
- Abstract要約: ツールネームは、様々なコード検索、生成、修復ツールを統合することができ、これら3つの研究領域を初めて組み合わせることができる。
例えば、CodeLlamaは62.53%の改善で267のプログラミング問題を解決するのに役立ちます。
- 参考スコア(独自算出の注目度): 9.562123938545522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic programming attempts to minimize human intervention in the generation of executable code, and has been a long-standing challenge in the software engineering community. To advance automatic programming, researchers are focusing on three primary directions: (1) code search that reuses existing code snippets from external databases; (2) code generation that produces new code snippets from natural language; and (3) program repair that refines existing code snippets by fixing detected bugs. Despite significant advancements, the effectiveness of state-of-the-art techniques is still limited, such as the usability of searched code and the correctness of generated code. Motivated by the real-world programming process, where developers usually use various external tools to aid their coding processes, such as code search engines and code testing tools, in this work, we propose \toolname{}, an automatic programming framework that leverages recent large language models (LLMs) to integrate the three research areas to address their inherent limitations. In particular, our framework first leverages different code search strategies to retrieve similar code snippets, which are then used to further guide the code generation process of LLMs. Our framework further validates the quality of generated code by compilers and test cases, and constructs repair prompts to query LLMs for generating correct patches. We conduct preliminary experiments to demonstrate the potential of our framework, \eg helping CodeLlama solve 267 programming problems with an improvement of 62.53\%. As a generic framework, \toolname{} can integrate various code search, generation, and repair tools, combining these three research areas together for the first time. More importantly, it demonstrates the potential of using traditional SE tools to enhance the usability of LLMs in automatic programming.
- Abstract(参考訳): 自動プログラミングは、実行可能なコード生成に対する人間の介入を最小限に抑えようと試みており、ソフトウェア工学コミュニティでは長年にわたって挑戦されてきた。
1)外部データベースから既存のコードスニペットを再利用するコード検索,(2)自然言語から新しいコードスニペットを生成するコード生成,(3)検出されたバグを修正することで既存のコードスニペットを洗練するプログラム修復,である。
大幅な進歩にもかかわらず、検索されたコードの使いやすさや生成されたコードの正確性など、最先端技術の有効性はまだ限られている。
本研究では,最近の大規模言語モデル (LLM) を活用した自動プログラミングフレームワークである \toolname{} を提案し,これらの3つの研究領域を統合して,固有の制約に対処する。
特に,このフレームワークでは,まず異なるコード検索手法を用いて類似のコードスニペットを検索し,LLMのコード生成プロセスをさらにガイドする。
本フレームワークは,コンパイラやテストケースによって生成されたコードの品質をさらに検証し,修正プロンプトを構築して,正しいパッチを生成するためのLCMをクエリする。
CodeLlamaは62.53\%の改善で267のプログラミング問題を解決するのに役立ちます。
一般的なフレームワークとして、 \toolname{}は、様々なコード検索、生成、修復ツールを統合することができ、これら3つの研究領域を初めて組み合わせることができる。
さらに重要なのは、従来のSEツールを使用して、自動プログラミングにおけるLLMのユーザビリティを高める可能性を示している。
関連論文リスト
- A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation [0.0]
最近27の論文がレビューされ、2つのグループに分けられた。
最初のグループは、意味的エラーの特定を含む、バグの検出と修復のための新しいメソッドで構成されている。
2つ目のグループはコード生成に精通しており、プログラミングとタスク固有のモデルのために微調整された汎用LLMの概要を提供している。
また、識別子認識トレーニング、命令レベルでの微調整、セマンティックコード構造の導入など、コード生成を改善する方法も提示されている。
論文 参考訳(メタデータ) (2024-11-12T06:47:54Z) - SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer [0.0]
SuperCoder2.0は、人工知能によるソフトウェア開発を強化するために設計された高度な自律システムである。
システムは、AIネイティブな開発アプローチとインテリジェントエージェントを組み合わせて、完全に自律的なコーディングを可能にする。
論文 参考訳(メタデータ) (2024-09-17T13:44:42Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Function-constrained Program Synthesis [12.55507214959886]
大規模言語モデル(LLM)は、開発環境で利用可能なすべてのコードを描画することで、リアルタイムでコードを生成することができる。
現在のシステムには効果的なリカバリ方法が欠如しており、ユーザーは十分な解に到達するまで、修正されたプロンプトでモデルを反復的に再起動せざるを得ない。
提案手法は,コード生成を明示的な関数集合に制約し,自動生成されたサブ関数を通じて失敗した試行からのリカバリを可能にする。
論文 参考訳(メタデータ) (2023-11-27T02:55:34Z) - CoLadder: Supporting Programmers with Hierarchical Code Generation in
Multi-Level Abstraction [16.325032481071997]
CoLadderは、階層的なタスク分解、直接コードセグメント操作、結果評価を容易にすることで、プログラマをサポートするシステムである。
12人の経験豊富なプログラマによるユーザスタディでは、CoLadderがプログラマの問題解決意図を柔軟に外部化するのに有効であることが示された。
論文 参考訳(メタデータ) (2023-10-12T20:07:01Z) - Chatbots As Fluent Polyglots: Revisiting Breakthrough Code Snippets [0.0]
この研究は、AI駆動のコードアシスタントを使用して、現代技術を形成する影響力のあるコンピュータコードの選択を分析する。
この研究の最初の貢献は、過去50年で最も重要なコードの進歩の半分を調査することであった。
論文 参考訳(メタデータ) (2023-01-05T23:17:17Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
より深い推論を必要とする問題に対する新しいソリューションを作成することができるコード生成システムであるAlphaCodeを紹介する。
Codeforcesプラットフォームにおける最近のプログラミングコンペティションのシミュレーション評価において、AlphaCodeは平均54.3%のランキングを達成した。
論文 参考訳(メタデータ) (2022-02-08T23:16:31Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。