論文の概要: Decomposing heterogeneous dynamical systems with graph neural networks
- arxiv url: http://arxiv.org/abs/2407.19160v1
- Date: Sat, 27 Jul 2024 04:03:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 19:31:05.608725
- Title: Decomposing heterogeneous dynamical systems with graph neural networks
- Title(参考訳): グラフニューラルネットワークによる異種力学系の分解
- Authors: Cédric Allier, Magdalena C. Schneider, Michael Innerberger, Larissa Heinrich, John A. Bogovic, Stephan Saalfeld,
- Abstract要約: グラフニューラルネットワークは、異種システムの相互作用規則と構造を協調的に学習するように設計できることを示す。
学習された潜在構造と力学は、複雑なシステムを事実上分解するために使うことができる。
- 参考スコア(独自算出の注目度): 0.16492989697868887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural physical, chemical, and biological dynamical systems are often complex, with heterogeneous components interacting in diverse ways. We show that graph neural networks can be designed to jointly learn the interaction rules and the structure of the heterogeneity from data alone. The learned latent structure and dynamics can be used to virtually decompose the complex system which is necessary to parameterize and infer the underlying governing equations. We tested the approach with simulation experiments of moving particles and vector fields that interact with each other. While our current aim is to better understand and validate the approach with simulated data, we anticipate it to become a generally applicable tool to uncover the governing rules underlying complex dynamics observed in nature.
- Abstract(参考訳): 自然、化学的、生物学的力学系はしばしば複雑であり、異種成分は様々な方法で相互作用する。
グラフニューラルネットワークは、データのみから相互作用規則と不均一性の構造を共同で学習するように設計できることを示す。
学習された潜在構造と力学は、基礎となる支配方程式のパラメータ化と推論に必要な複雑な系を事実上分解するために用いられる。
移動粒子とベクトル場が相互に相互作用するシミュレーション実験により,本手法を検証した。
現在の目的は、シミュレーションデータによるアプローチをよりよく理解し、検証することにありますが、自然界で観察される複雑なダイナミクスの根底にあるルールを明らかにするための、一般的に適用可能なツールになることを期待しています。
関連論文リスト
- Integrating GNN and Neural ODEs for Estimating Two-Body Interactions in Mixed-Species Collective Motion [0.0]
本稿では,観測軌道から基礎となる運動方程式を推定するための新しいディープラーニングフレームワークを提案する。
本フレームワークは,グラフニューラルネットワークとニューラルディファレンシャル方程式を統合し,二体相互作用の効果的な予測を可能にする。
論文 参考訳(メタデータ) (2024-05-26T09:47:17Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
このような相互作用を発見する代替手法として、ニューラル・インタラクション・推論(NIIP)を提案する。
NIIPは観測された関係制約を尊重する軌道のサブセットに低エネルギーを割り当てる。
別々に訓練されたモデル間での相互作用の型を交換するなどの軌道操作や、軌道予測を可能にする。
論文 参考訳(メタデータ) (2023-10-23T00:44:17Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
本稿では,従来の手法と比較して2つの特徴を持つ関係推論の確率的手法を提案する。
提案手法を複数のベンチマークデータセットで評価し,既存の手法よりも精度良く対話型を推定できることを実証した。
全体として、提案モデルはデータ効率が高く、より小さなシステムで訓練された場合、大規模システムに対して一般化可能である。
論文 参考訳(メタデータ) (2023-04-30T19:45:04Z) - Learning Heterogeneous Interaction Strengths by Trajectory Prediction
with Graph Neural Network [0.0]
地中相互作用強度を考慮せずに連続的に重み付けされた相互作用グラフを推定するための注意関係推論ネットワーク(RAIN)を提案する。
本研究では, シミュレーションされた物理系の連続的な相互作用強度を, 教師なしの方法で正確に推定できることを述べる。
論文 参考訳(メタデータ) (2022-08-28T09:13:33Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
論文 参考訳(メタデータ) (2022-05-04T21:33:56Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。