論文の概要: Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model
- arxiv url: http://arxiv.org/abs/2205.02332v3
- Date: Tue, 14 May 2024 21:49:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 22:33:52.955882
- Title: Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model
- Title(参考訳): 離散事象シミュレーションモデルを用いた人口動態からの個人間相互作用の学習
- Authors: Yan Shen, Fan Yang, Mingchen Gao, Wen Dong,
- Abstract要約: 複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
- 参考スコア(独自算出の注目度): 9.827590402695341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The abundance of data affords researchers to pursue more powerful computational tools to learn the dynamics of complex system, such as neural networks, engineered systems and social networks. Traditional machine learning approaches capture complex system dynamics either with dynamic Bayesian networks and state space models, which is hard to scale because it is non-trivial to prescribe the dynamics with a sparse graph or a system of differential equations; or a deep neural networks, where the distributed representation of the learned dynamics is hard to interpret. In this paper, we will explore the possibility of learning a discrete-event simulation representation of complex system dynamics assuming multivariate normal distribution of the state variables, based on the observation that many complex system dynamics can be decomposed into a sequence of local interactions, which individually change the system state only minimally but in sequence generate complex and diverse dynamics. Our results show that the algorithm can data-efficiently capture complex network dynamics in several fields with meaningful events.
- Abstract(参考訳): 膨大なデータによって、研究者はニューラルネットワークやエンジニアリングされたシステム、ソーシャルネットワークといった複雑なシステムのダイナミクスを学ぶために、より強力な計算ツールを追求することができる。
従来の機械学習アプローチは、動的ベイズネットワークと状態空間モデルの両方で複雑なシステムダイナミクスをキャプチャするが、これは、スパースグラフや微分方程式のシステムでダイナミクスを規定するのは簡単ではないため、スケールするのが難しい。
本稿では,多変量正規分布を仮定した複雑系力学の離散時間シミュレーション表現を,局所的相互作用の列に分解できることから学習する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
関連論文リスト
- Decomposing heterogeneous dynamical systems with graph neural networks [0.16492989697868887]
グラフニューラルネットワークは、異種システムの相互作用規則と構造を協調的に学習するように設計できることを示す。
学習された潜在構造と力学は、複雑なシステムを事実上分解するために使うことができる。
論文 参考訳(メタデータ) (2024-07-27T04:03:12Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Learning Continuous Network Emerging Dynamics from Scarce Observations
via Data-Adaptive Stochastic Processes [11.494631894700253]
我々は、データ適応型ネットワークダイナミクスによって制御される新しいプロセスのクラスであるODE Processs for Network Dynamics (NDP4ND)を紹介する。
提案手法はデータと計算効率に優れており,未確認のネットワークに適応できることを示す。
論文 参考訳(メタデータ) (2023-10-25T08:44:05Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
まず最初に、このリッチな意味では、ResNetsは意味のある動的でないことを示します。
次に、ニューラルネットワークモデルが連続力学系を表現することを実証する。
ResNetアーキテクチャの詳細な一般化としてContinuousNetを紹介します。
論文 参考訳(メタデータ) (2020-08-05T22:54:09Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。