Graph Memory Learning: Imitating Lifelong Remembering and Forgetting of Brain Networks
- URL: http://arxiv.org/abs/2407.19183v1
- Date: Sat, 27 Jul 2024 05:50:54 GMT
- Title: Graph Memory Learning: Imitating Lifelong Remembering and Forgetting of Brain Networks
- Authors: Jiaxing Miao, Liang Hu, Qi Zhang, Longbing Cao,
- Abstract summary: This paper introduces a new concept of graph memory learning - Brain-inspired Graph Memory Learning (BGML)
BGML incorporates a multi-granular hierarchical progressive learning mechanism rooted in feature graph grain learning to mitigate potential conflict between memorization and forgetting.
In addition, to tackle the issue of unreliable structures in newly added incremental information, the paper introduces an information self-assessment ownership mechanism.
- Score: 31.554027786868815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph data in real-world scenarios undergo rapid and frequent changes, making it challenging for existing graph models to effectively handle the continuous influx of new data and accommodate data withdrawal requests. The approach to frequently retraining graph models is resource intensive and impractical. To address this pressing challenge, this paper introduces a new concept of graph memory learning. Its core idea is to enable a graph model to selectively remember new knowledge but forget old knowledge. Building on this approach, the paper presents a novel graph memory learning framework - Brain-inspired Graph Memory Learning (BGML), inspired by brain network dynamics and function-structure coupling strategies. BGML incorporates a multi-granular hierarchical progressive learning mechanism rooted in feature graph grain learning to mitigate potential conflict between memorization and forgetting in graph memory learning. This mechanism allows for a comprehensive and multi-level perception of local details within evolving graphs. In addition, to tackle the issue of unreliable structures in newly added incremental information, the paper introduces an information self-assessment ownership mechanism. This mechanism not only facilitates the propagation of incremental information within the model but also effectively preserves the integrity of past experiences. We design five types of graph memory learning tasks: regular, memory, unlearning, data-incremental, and class-incremental to evaluate BGML. Its excellent performance is confirmed through extensive experiments on multiple real-world node classification datasets.
Related papers
- Community-Centric Graph Unlearning [10.906555492206959]
We propose a novel Graph Structure Mapping Unlearning paradigm (GSMU) and a novel method based on it named Community-centric Graph Eraser (CGE)
CGE maps community subgraphs to nodes, thereby enabling the reconstruction of a node-level unlearning operation within a reduced mapped graph.
arXiv Detail & Related papers (2024-08-19T05:37:35Z) - Incremental Learning with Concept Drift Detection and Prototype-based Embeddings for Graph Stream Classification [11.811637154674939]
This work introduces a novel method for graph stream classification.
It operates under the general setting where a data generating process produces graphs with varying nodes and edges over time.
It incorporates a loss-based concept drift detection mechanism to recalculate graph prototypes when drift is detected.
arXiv Detail & Related papers (2024-04-03T08:47:32Z) - A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion.
Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs.
We propose TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework.
arXiv Detail & Related papers (2024-01-05T22:22:13Z) - PUMA: Efficient Continual Graph Learning for Node Classification with Graph Condensation [49.00940417190911]
Existing graph representation learning models encounter a catastrophic problem when learning with newly incoming graphs.
In this paper, we propose a PUdo-label guided Memory bAnkrogation (PUMA) framework to enhance its efficiency and effectiveness.
arXiv Detail & Related papers (2023-12-22T05:09:58Z) - Graph Relation Aware Continual Learning [3.908470250825618]
Continual graph learning (CGL) studies the problem of learning from an infinite stream of graph data.
We design a relation-aware adaptive model, dubbed as RAM-CG, that consists of a relation-discovery modular to explore latent relations behind edges.
RAM-CG provides significant 2.2%, 6.9% and 6.6% accuracy improvements over the state-of-the-art results on CitationNet, OGBN-arxiv and TWITCH dataset.
arXiv Detail & Related papers (2023-08-16T09:53:20Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Few-shot Class-incremental Learning [25.94168397283495]
The ability to incrementally learn new classes is vital to all real-world artificial intelligence systems.
In this paper, we investigate the challenging yet practical problem, Graph Few-shot Class-incremental (Graph FCL) problem.
We put forward a Graph Pseudo Incremental Learning paradigm by sampling tasks recurrently from the base classes.
We present a task-sensitive regularizer calculated from task-level attention and node class prototypes to mitigate overfitting onto either novel or base classes.
arXiv Detail & Related papers (2021-12-23T19:46:07Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.