Ensembling convolutional neural networks for human skin segmentation
- URL: http://arxiv.org/abs/2407.19310v1
- Date: Sat, 27 Jul 2024 17:55:28 GMT
- Title: Ensembling convolutional neural networks for human skin segmentation
- Authors: Patryk Kuban, Michal Kawulok,
- Abstract summary: We propose to train a convolutional network using the datasets focused on different features to create an ensemble whose individual outcomes are effectively combined.
We expect that this study will help in developing new ensemble-based techniques that will improve the performance of semantic segmentation systems.
- Score: 2.8391355909797644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting and segmenting human skin regions in digital images is an intensively explored topic of computer vision with a variety of approaches proposed over the years that have been found useful in numerous practical applications. The first methods were based on pixel-wise skin color modeling and they were later enhanced with context-based analysis to include the textural and geometrical features, recently extracted using deep convolutional neural networks. It has been also demonstrated that skin regions can be segmented from grayscale images without using color information at all. However, the possibility to combine these two sources of information has not been explored so far and we address this research gap with the contribution reported in this paper. We propose to train a convolutional network using the datasets focused on different features to create an ensemble whose individual outcomes are effectively combined using yet another convolutional network trained to produce the final segmentation map. The experimental results clearly indicate that the proposed approach outperforms the basic classifiers, as well as an ensemble based on the voting scheme. We expect that this study will help in developing new ensemble-based techniques that will improve the performance of semantic segmentation systems, reaching beyond the problem of detecting human skin.
Related papers
- Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
We propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples.
We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.
arXiv Detail & Related papers (2023-02-01T18:32:06Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - End-to-end Neuron Instance Segmentation based on Weakly Supervised
Efficient UNet and Morphological Post-processing [0.0]
We present an end-to-end weakly-supervised framework to automatically detect and segment NeuN stained neuronal cells on histological images.
We integrate the state-of-the-art network, EfficientNet, into our U-Net-like architecture.
arXiv Detail & Related papers (2022-02-17T14:35:45Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - Learning to Segment Human Body Parts with Synthetically Trained Deep
Convolutional Networks [58.0240970093372]
This paper presents a new framework for human body part segmentation based on Deep Convolutional Neural Networks trained using only synthetic data.
The proposed approach achieves cutting-edge results without the need of training the models with real annotated data of human body parts.
arXiv Detail & Related papers (2021-02-02T12:26:50Z) - A new approach to descriptors generation for image retrieval by
analyzing activations of deep neural network layers [43.77224853200986]
We consider the problem of descriptors construction for the task of content-based image retrieval using deep neural networks.
It is known that the total number of neurons in the convolutional part of the network is large and the majority of them have little influence on the final classification decision.
We propose a novel algorithm that allows us to extract the most significant neuron activations and utilize this information to construct effective descriptors.
arXiv Detail & Related papers (2020-07-13T18:53:10Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.