Polyp segmentation in colonoscopy images using DeepLabV3++
- URL: http://arxiv.org/abs/2407.19327v1
- Date: Sat, 27 Jul 2024 19:24:55 GMT
- Title: Polyp segmentation in colonoscopy images using DeepLabV3++
- Authors: Al Mohimanul Islam, Sadia Shakiba Bhuiyan, Mysun Mashira, Md. Rayhan Ahmed, Salekul Islam, Swakkhar Shatabda,
- Abstract summary: We introduce the DeepLabv3++ model which is an enhanced version of the DeepLabv3+ architecture.
The proposed model incorporates diverse separable convolutional layers and attention mechanisms within the MSPP block, enhancing its capacity to capture multi-scale and directional features.
The experimental analysis shows that DeepLabV3++ outperforms several state-of-the-art models in polyp segmentation tasks.
- Score: 3.0182171147100076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmenting polyps in colonoscopy images is essential for the early identification and diagnosis of colorectal cancer, a significant cause of worldwide cancer deaths. Prior deep learning based models such as Attention based variation, UNet variations and Transformer-derived networks have had notable success in capturing intricate features and complex polyp shapes. In this study, we have introduced the DeepLabv3++ model which is an enhanced version of the DeepLabv3+ architecture. It is designed to improve the precision and robustness of polyp segmentation in colonoscopy images. We have utilized The proposed model incorporates diverse separable convolutional layers and attention mechanisms within the MSPP block, enhancing its capacity to capture multi-scale and directional features. Additionally, the redesigned decoder further transforms the extracted features from the encoder into a more meaningful segmentation map. Our model was evaluated on three public datasets (CVC-ColonDB, CVC-ClinicDB, Kvasir-SEG) achieving Dice coefficient scores of 96.20%, 96.54%, and 96.08%, respectively. The experimental analysis shows that DeepLabV3++ outperforms several state-of-the-art models in polyp segmentation tasks. Furthermore, compared to the baseline DeepLabV3+ model, our DeepLabV3++ with its MSPP module and redesigned decoder architecture, significantly reduced segmentation errors (e.g., false positives/negatives) across small, medium, and large polyps. This improvement in polyp delineation is crucial for accurate clinical decision-making in colonoscopy.
Related papers
- Polyp-E: Benchmarking the Robustness of Deep Segmentation Models via Polyp Editing [32.30835026874521]
In daily clinical practice, clinicians exhibit robustness in identifying polyps with both location and size variations.
It is uncertain if deep segmentation models can achieve comparable robustness in automated colonoscopic analysis.
We focus on evaluating the robustness of segmentation models on the polyps with various attributes and healthy samples.
arXiv Detail & Related papers (2024-10-22T06:30:37Z) - M3FPolypSegNet: Segmentation Network with Multi-frequency Feature Fusion
for Polyp Localization in Colonoscopy Images [1.389360509566256]
Multi-Frequency Feature Fusion Polyp Network (M3FPolypSegNet) was proposed to decompose the input image into low/high/full-frequency components.
We used three independent multi-frequency encoders to map multiple input images into a high-dimensional feature space.
We designed three multi-task learning (i.e., region, edge, and distance) in four decoder blocks to learn the structural characteristics of the region.
arXiv Detail & Related papers (2023-10-09T09:01:53Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Stepwise Feature Fusion: Local Guides Global [14.394421688712052]
We propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models.
Our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and attention dispersion.
arXiv Detail & Related papers (2022-03-07T10:36:38Z) - Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers [124.01928050651466]
We propose a new type of polyp segmentation method, named Polyp-PVT.
The proposed model, named Polyp-PVT, effectively suppresses noises in the features and significantly improves their expressive capabilities.
arXiv Detail & Related papers (2021-08-16T07:09:06Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - A Deep Convolutional Neural Network for the Detection of Polyps in
Colonoscopy Images [12.618653234201089]
We propose a deep convolutional neural network based model for the computerized detection of polyps within colonoscopy images.
Data augmentation techniques such as photometric and geometric distortions are adapted to overcome the obstacles faced in polyp detection.
arXiv Detail & Related papers (2020-08-15T13:55:44Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - Colorectal Polyp Segmentation by U-Net with Dilation Convolution [9.840695333927496]
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a leading cause of cancer deaths in the United States.
Currently, the most common way for colorectal polyp detection and precancerous pathology is the colonoscopy.
We propose a novel end-to-end deep learning framework for the colorectal polyp segmentation.
arXiv Detail & Related papers (2019-12-26T23:27:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.