論文の概要: Inference-Time Selective Debiasing
- arxiv url: http://arxiv.org/abs/2407.19345v1
- Date: Sat, 27 Jul 2024 21:56:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:41:57.639599
- Title: Inference-Time Selective Debiasing
- Title(参考訳): 推論時間選択バイアス
- Authors: Gleb Kuzmin, Nemeesh Yadav, Ivan Smirnov, Timothy Baldwin, Artem Shelmanov,
- Abstract要約: モデル全体の品質向上を目的とした,推論時の安全性メカニズムである選択的デバイアス(elective debiasing)を提案する。
潜在的なバイアスのあるモデル予測を特定し、それらを捨てる代わりに、後処理のデバイアス手法であるLEACEを使ってそれらをデバイアスします。
テキスト分類データセットを用いた実験では、選択的デバイアスは、後処理方法とトレーニングと前処理のデバイアス技術の間のパフォーマンスギャップを埋めるのに役立つことが示されている。
- 参考スコア(独自算出の注目度): 25.830766802953878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose selective debiasing -- an inference-time safety mechanism that aims to increase the overall quality of models in terms of prediction performance and fairness in the situation when re-training a model is prohibitive. The method is inspired by selective prediction, where some predictions that are considered low quality are discarded at inference time. In our approach, we identify the potentially biased model predictions and, instead of discarding them, we debias them using LEACE -- a post-processing debiasing method. To select problematic predictions, we propose a bias quantification approach based on KL divergence, which achieves better results than standard UQ methods. Experiments with text classification datasets demonstrate that selective debiasing helps to close the performance gap between post-processing methods and at-training and pre-processing debiasing techniques.
- Abstract(参考訳): モデルの再トレーニングが禁じられている状況において、予測性能と公平性の観点からモデル全体の品質を高めることを目的とした、予測時安全機構である選択的脱バイアスを提案する。
この方法は選択予測にインスパイアされ、低い品質と見なされる予測は推論時に破棄される。
このアプローチでは、潜在的なバイアスのあるモデル予測を特定し、それらを捨てる代わりに、後処理のデバイアス法であるLEACEを使ってそれらをデバイアスします。
問題のある予測を選択するために,従来のUQ法よりも優れた結果が得られるKL分散に基づくバイアス定量化手法を提案する。
テキスト分類データセットを用いた実験では、選択的デバイアスは、後処理方法とトレーニングと前処理のデバイアス技術の間のパフォーマンスギャップを埋めるのに役立つことが示されている。
関連論文リスト
- CalibraEval: Calibrating Prediction Distribution to Mitigate Selection Bias in LLMs-as-Judges [21.580762639442913]
推論中に選択バイアスを緩和する新しいラベルフリー手法であるCalibraEvalを紹介する。
CalibraEvalは、バイアスのない予測分布に合わせて観測された予測分布を調整するための最適化タスクとしてデバイアスを再構成する。
本稿では,CalibraEvalが選択バイアスを効果的に軽減し,既存のデバイアス法と比較して性能を向上させることを示す。
論文 参考訳(メタデータ) (2024-10-20T13:47:39Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
本稿では,分類モデルに適したランクベーススコア関数を用いた新しいコンフォメーション予測手法を提案する。
提案手法は,そのサイズを管理しながら,所望のカバレッジ率を達成する予測セットを構築する。
コントリビューションには、新しい共形予測法、理論的解析、経験的評価が含まれる。
論文 参考訳(メタデータ) (2024-07-05T10:43:41Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Balancing Unobserved Confounding with a Few Unbiased Ratings in Debiased
Recommendations [4.960902915238239]
本稿では,既存のデバイアス法に適用可能な理論的に保証されたモデル非依存バランス手法を提案する。
提案手法では, バイアスデータを用いて学習したモデルパラメータを補正し, バイアスデータのバランス係数を適応的に学習することで, バイアスデータを完全に活用する。
論文 参考訳(メタデータ) (2023-04-17T08:56:55Z) - Calibrated Selective Classification [34.08454890436067]
そこで我々は,「不確か」な不確実性のある例を拒否する手法を提案する。
本稿では,選択的校正モデル学習のためのフレームワークを提案する。そこでは,任意のベースモデルの選択的校正誤差を改善するために,個別のセレクタネットワークを訓練する。
われわれは,複数画像分類と肺癌リスク評価におけるアプローチの実証的効果を実証した。
論文 参考訳(メタデータ) (2022-08-25T13:31:09Z) - Model-agnostic bias mitigation methods with regressor distribution
control for Wasserstein-based fairness metrics [0.6509758931804478]
より公平な回帰分布を持つ後処理モデルの構築に基づくバイアス緩和手法を提案する。
提案手法は低次元空間において最適化を行い,コストのかかるモデル再訓練を回避する。
論文 参考訳(メタデータ) (2021-11-19T17:31:22Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
片側予測(OSP)に基づく緩和は、実際に関係する高目標精度体制において、ほぼ最適カバレッジが得られるSCスキームをもたらす。
理論的には,SCとOSPのバウンダリ一般化を導出し,その手法が小さな誤差レベルでのカバレッジにおいて,技術手法の状態を強く上回ることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:14:27Z) - Towards Debiasing NLU Models from Unknown Biases [70.31427277842239]
NLUモデルは、しばしばバイアスを利用して、意図したタスクを適切に学習することなく、データセット固有の高いパフォーマンスを達成する。
本稿では、モデルがバイアスを事前に知ることなく、主にバイアスを利用するのを防ぐ自己バイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-25T15:49:39Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。