論文の概要: Inference-Time Selective Debiasing to Enhance Fairness in Text Classification Models
- arxiv url: http://arxiv.org/abs/2407.19345v3
- Date: Mon, 10 Feb 2025 13:18:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:27:25.165633
- Title: Inference-Time Selective Debiasing to Enhance Fairness in Text Classification Models
- Title(参考訳): テキスト分類モデルにおける公平性を高めるための推定時間選択バイアス
- Authors: Gleb Kuzmin, Neemesh Yadav, Ivan Smirnov, Timothy Baldwin, Artem Shelmanov,
- Abstract要約: モデル全体の品質を高めるために設計された推論時間安全機構である選択的偏り(elective debiasing)を提案する。
潜在的なバイアスのあるモデル予測を特定し、それらを捨てる代わりに、後処理のデバイアス法であるLEACEを使ってこれらの予測からバイアスを取り除く。
エンコーダに基づく分類モデルを用いたテキスト分類データセットの実験では、選択的デバイアスは、後処理手法とデバイアス技術のパフォーマンスギャップを低減するのに役立つことが示されている。
- 参考スコア(独自算出の注目度): 27.578390085427156
- License:
- Abstract: We propose selective debiasing -- an inference-time safety mechanism designed to enhance the overall model quality in terms of prediction performance and fairness, especially in scenarios where retraining the model is impractical. The method draws inspiration from selective classification, where at inference time, predictions with low quality, as indicated by their uncertainty scores, are discarded. In our approach, we identify the potentially biased model predictions and, instead of discarding them, we remove bias from these predictions using LEACE -- a post-processing debiasing method. To select problematic predictions, we propose a bias quantification approach based on KL divergence, which achieves better results than standard uncertainty quantification methods. Experiments on text classification datasets with encoder-based classification models demonstrate that selective debiasing helps to reduce the performance gap between post-processing methods and debiasing techniques from the at-training and pre-processing categories.
- Abstract(参考訳): 本稿では,モデルの再トレーニングが現実的でないシナリオにおいて,モデル品質の予測性能と公平性の観点から,モデル品質の全般的向上を目的とした予測時安全性機構である選択的脱バイアスを提案する。
この手法は選択分類からインスピレーションを得ており、推論時に不確実性スコアによって示される低品質の予測が破棄される。
このアプローチでは、潜在的なバイアスのあるモデル予測を特定し、それらを捨てる代わりに、後処理のデバイアス法であるLEACEを使ってこれらの予測からバイアスを取り除く。
そこで本研究では,KL分散に基づくバイアス定量化手法を提案する。
エンコーダに基づく分類モデルを用いたテキスト分類データセットの実験では、選択的デバイアスは、後処理手法とトレーニングと前処理カテゴリからのデバイアス技術のパフォーマンスギャップを低減するのに役立つことが示されている。
関連論文リスト
- CalibraEval: Calibrating Prediction Distribution to Mitigate Selection Bias in LLMs-as-Judges [21.580762639442913]
推論中に選択バイアスを緩和する新しいラベルフリー手法であるCalibraEvalを紹介する。
CalibraEvalは、バイアスのない予測分布に合わせて観測された予測分布を調整するための最適化タスクとしてデバイアスを再構成する。
本稿では,CalibraEvalが選択バイアスを効果的に軽減し,既存のデバイアス法と比較して性能を向上させることを示す。
論文 参考訳(メタデータ) (2024-10-20T13:47:39Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Conformalized Selective Regression [2.3964255330849356]
共形予測を利用した選択回帰手法を提案する。
提案手法は, 選択回帰に適合し, 複数の最先端ベースラインに対して有利であることを示す。
論文 参考訳(メタデータ) (2024-02-26T04:43:50Z) - Balancing Unobserved Confounding with a Few Unbiased Ratings in Debiased
Recommendations [4.960902915238239]
本稿では,既存のデバイアス法に適用可能な理論的に保証されたモデル非依存バランス手法を提案する。
提案手法では, バイアスデータを用いて学習したモデルパラメータを補正し, バイアスデータのバランス係数を適応的に学習することで, バイアスデータを完全に活用する。
論文 参考訳(メタデータ) (2023-04-17T08:56:55Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z) - Calibrated Selective Classification [34.08454890436067]
そこで我々は,「不確か」な不確実性のある例を拒否する手法を提案する。
本稿では,選択的校正モデル学習のためのフレームワークを提案する。そこでは,任意のベースモデルの選択的校正誤差を改善するために,個別のセレクタネットワークを訓練する。
われわれは,複数画像分類と肺癌リスク評価におけるアプローチの実証的効果を実証した。
論文 参考訳(メタデータ) (2022-08-25T13:31:09Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Model-agnostic bias mitigation methods with regressor distribution
control for Wasserstein-based fairness metrics [0.6509758931804478]
より公平な回帰分布を持つ後処理モデルの構築に基づくバイアス緩和手法を提案する。
提案手法は低次元空間において最適化を行い,コストのかかるモデル再訓練を回避する。
論文 参考訳(メタデータ) (2021-11-19T17:31:22Z) - Towards Debiasing NLU Models from Unknown Biases [70.31427277842239]
NLUモデルは、しばしばバイアスを利用して、意図したタスクを適切に学習することなく、データセット固有の高いパフォーマンスを達成する。
本稿では、モデルがバイアスを事前に知ることなく、主にバイアスを利用するのを防ぐ自己バイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-25T15:49:39Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。