Design and Optimization of Big Data and Machine Learning-Based Risk Monitoring System in Financial Markets
- URL: http://arxiv.org/abs/2407.19352v1
- Date: Sun, 28 Jul 2024 00:04:34 GMT
- Title: Design and Optimization of Big Data and Machine Learning-Based Risk Monitoring System in Financial Markets
- Authors: Liyang Wang, Yu Cheng, Xingxin Gu, Zhizhong Wu,
- Abstract summary: This paper designs and optimize a risk monitoring system based on big data and machine learning.
It effectively integrates large-scale financial data and advanced machine learning algorithms.
Research findings demonstrate that the system significantly enhances efficiency and accuracy in risk management.
- Score: 9.599753686171217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing complexity of financial markets and rapid growth in data volume, traditional risk monitoring methods no longer suffice for modern financial institutions. This paper designs and optimizes a risk monitoring system based on big data and machine learning. By constructing a four-layer architecture, it effectively integrates large-scale financial data and advanced machine learning algorithms. Key technologies employed in the system include Long Short-Term Memory (LSTM) networks, Random Forest, Gradient Boosting Trees, and real-time data processing platform Apache Flink, ensuring the real-time and accurate nature of risk monitoring. Research findings demonstrate that the system significantly enhances efficiency and accuracy in risk management, particularly excelling in identifying and warning against market crash risks.
Related papers
- Robust Graph Neural Networks for Stability Analysis in Dynamic Networks [16.077138803931295]
This paper explores the economic risk identification algorithm based on the graph neural network (GNN) algorithm.
It aims to provide financial institutions and regulators with more intelligent technical tools to help maintain the security and stability of the financial market.
arXiv Detail & Related papers (2024-10-29T06:11:36Z) - Analysis of Financial Risk Behavior Prediction Using Deep Learning and Big Data Algorithms [7.713045399751312]
This paper explores the feasibility and effectiveness of using deep learning and big data algorithms for financial risk behavior prediction.
A deep learning-based big data risk prediction framework is designed and experimentally validated on actual financial datasets.
arXiv Detail & Related papers (2024-10-25T08:52:04Z) - Predicting Liquidity Coverage Ratio with Gated Recurrent Units: A Deep Learning Model for Risk Management [5.864973298916232]
This paper proposes a liquidity coverage ratio (LCR) prediction model based on the gated recurrent unit (GRU) network to help financial institutions manage their liquidity risk more effectively.
By utilizing the GRU network in deep learning technology, the model can automatically learn complex patterns from historical data and accurately predict LCR for a period of time in the future.
arXiv Detail & Related papers (2024-10-24T23:43:50Z) - Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning [2.766666938196471]
This article explores how to fully utilize big data technology to achieve complete integration of internal and external data of financial institutions.
This article adopts big data mining and real-time streaming data processing technology to monitor, analyze, and alert various business data.
arXiv Detail & Related papers (2024-09-16T14:41:41Z) - Enhancing Data Quality through Self-learning on Imbalanced Financial Risk Data [11.910955398918444]
This study investigates data pre-processing techniques to enhance existing financial risk datasets.
We introduce TriEnhance, a straightforward technique that entails: (1) generating synthetic samples specifically tailored to the minority class, (2) filtering using binary feedback to refine samples, and (3) self-learning with pseudo-labels.
Our experiments reveal the efficacy of TriEnhance, with a notable focus on improving minority class calibration, a key factor for developing more robust financial risk prediction systems.
arXiv Detail & Related papers (2024-09-15T16:59:15Z) - Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models.
Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality.
In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large.
arXiv Detail & Related papers (2024-05-17T18:11:11Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Risk-Driven Design of Perception Systems [47.787943101699966]
It is important that we design perception systems to minimize errors that reduce the overall safety of the system.
We develop a risk-driven approach to designing perception systems that accounts for the effect of perceptual errors on the performance of the fully-integrated, closed-loop system.
We evaluate our techniques on a realistic vision-based aircraft detect and avoid application and show that risk-driven design reduces collision risk by 37% over a baseline system.
arXiv Detail & Related papers (2022-05-21T21:14:56Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.