Predicting Liquidity Coverage Ratio with Gated Recurrent Units: A Deep Learning Model for Risk Management
- URL: http://arxiv.org/abs/2410.19211v1
- Date: Thu, 24 Oct 2024 23:43:50 GMT
- Title: Predicting Liquidity Coverage Ratio with Gated Recurrent Units: A Deep Learning Model for Risk Management
- Authors: Zhen Xu, Jingming Pan, Siyuan Han, Hongju Ouyang, Yuan Chen, Mohan Jiang,
- Abstract summary: This paper proposes a liquidity coverage ratio (LCR) prediction model based on the gated recurrent unit (GRU) network to help financial institutions manage their liquidity risk more effectively.
By utilizing the GRU network in deep learning technology, the model can automatically learn complex patterns from historical data and accurately predict LCR for a period of time in the future.
- Score: 5.864973298916232
- License:
- Abstract: With the global economic integration and the high interconnection of financial markets, financial institutions are facing unprecedented challenges, especially liquidity risk. This paper proposes a liquidity coverage ratio (LCR) prediction model based on the gated recurrent unit (GRU) network to help financial institutions manage their liquidity risk more effectively. By utilizing the GRU network in deep learning technology, the model can automatically learn complex patterns from historical data and accurately predict LCR for a period of time in the future. The experimental results show that compared with traditional methods, the GRU model proposed in this study shows significant advantages in mean absolute error (MAE), proving its higher accuracy and robustness. This not only provides financial institutions with a more reliable liquidity risk management tool but also provides support for regulators to formulate more scientific and reasonable policies, which helps to improve the stability of the entire financial system.
Related papers
- Design and Optimization of Big Data and Machine Learning-Based Risk Monitoring System in Financial Markets [9.599753686171217]
This paper designs and optimize a risk monitoring system based on big data and machine learning.
It effectively integrates large-scale financial data and advanced machine learning algorithms.
Research findings demonstrate that the system significantly enhances efficiency and accuracy in risk management.
arXiv Detail & Related papers (2024-07-28T00:04:34Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - A K-means Algorithm for Financial Market Risk Forecasting [3.4490908169211942]
K-means algorithm in machine learning is an effective risk prediction technique for financial market.
K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate.
arXiv Detail & Related papers (2024-05-21T02:24:46Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Predictive AI for SME and Large Enterprise Financial Performance
Management [0.0]
I introduce a new set of financial and macroeconomic ratios that supplement standard ratios of Balance Sheet and Income Statement.
I also provide a set of supervised learning models (ML Regressors and Neural Networks) and Bayesian models to predict company performance.
I conclude that the new proposed variables improve model accuracy when used in tandem with standard industry ratios.
arXiv Detail & Related papers (2023-09-22T11:04:32Z) - FinPT: Financial Risk Prediction with Profile Tuning on Pretrained
Foundation Models [32.7825479037623]
FinPT is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models.
FinBench is a set of high-quality datasets on financial risks such as default, fraud, and churn.
arXiv Detail & Related papers (2023-07-22T09:27:05Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Financial Distress Prediction For Small And Medium Enterprises Using
Machine Learning Techniques [5.301137510638804]
Financial Distress Prediction plays a crucial role in the economy by accurately forecasting the number and probability of failing structures.
However, predicting financial distress for Small and Medium Enterprises is challenging due to their inherent ambiguity.
We propose a corporate FCP model that better aligns with industry practice and incorporates the gathering of thin-head component analysis of financial data, corporate governance qualities, and market exchange data with a Relevant Vector Machine.
arXiv Detail & Related papers (2023-02-23T15:58:30Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.