論文の概要: Empowering Clinicians with Medical Decision Transformers: A Framework for Sepsis Treatment
- arxiv url: http://arxiv.org/abs/2407.19380v1
- Date: Sun, 28 Jul 2024 03:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:32:13.548127
- Title: Empowering Clinicians with Medical Decision Transformers: A Framework for Sepsis Treatment
- Title(参考訳): 医用決定変換器を応用した臨床医のセプシス治療の枠組み
- Authors: Aamer Abdul Rahman, Pranav Agarwal, Rita Noumeir, Philippe Jouvet, Vincent Michalski, Samira Ebrahimi Kahou,
- Abstract要約: 安全クリティカルな環境下での課題を解決するための医療意思決定変換器(MeDT)を提案する。
MeDTは、決定トランスフォーマーアーキテクチャを使用して、薬物投与推奨のポリシーを学ぶ。
MeDTは、患者の医療履歴、治療決定、結果、安定性に対する短期的影響の複雑な依存関係をキャプチャする。
- 参考スコア(独自算出の注目度): 5.0005174003014865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline reinforcement learning has shown promise for solving tasks in safety-critical settings, such as clinical decision support. Its application, however, has been limited by the lack of interpretability and interactivity for clinicians. To address these challenges, we propose the medical decision transformer (MeDT), a novel and versatile framework based on the goal-conditioned reinforcement learning paradigm for sepsis treatment recommendation. MeDT uses the decision transformer architecture to learn a policy for drug dosage recommendation. During offline training, MeDT utilizes collected treatment trajectories to predict administered treatments for each time step, incorporating known treatment outcomes, target acuity scores, past treatment decisions, and current and past medical states. This analysis enables MeDT to capture complex dependencies among a patient's medical history, treatment decisions, outcomes, and short-term effects on stability. Our proposed conditioning uses acuity scores to address sparse reward issues and to facilitate clinician-model interactions, enhancing decision-making. Following training, MeDT can generate tailored treatment recommendations by conditioning on the desired positive outcome (survival) and user-specified short-term stability improvements. We carry out rigorous experiments on data from the MIMIC-III dataset and use off-policy evaluation to demonstrate that MeDT recommends interventions that outperform or are competitive with existing offline reinforcement learning methods while enabling a more interpretable, personalized and clinician-directed approach.
- Abstract(参考訳): オフライン強化学習は、臨床的意思決定支援など、安全クリティカルな環境での課題の解決を約束している。
しかし、その応用は、臨床医の解釈可能性や相互作用性の欠如によって制限されている。
これらの課題に対処するため、我々は、敗血症治療推奨のための目標条件強化学習パラダイムに基づく、新規で汎用的なフレームワークであるMeDT(Medicical decision transformer)を提案する。
MeDTは、決定トランスフォーマーアーキテクチャを使用して、薬物投与推奨のポリシーを学ぶ。
オフライントレーニング中、MeDTは収集された治療軌跡を使用して、既知の治療結果、標的視力スコア、過去の治療決定、および現在および過去の医療状態を含む各時間ステップの投与治療を予測する。
この分析により、MeDTは患者の医療履歴、治療決定、結果、安定性に対する短期的な影響の複雑な依存関係を捉えることができる。
提案した条件付けでは,スパース報酬問題に対処し,クリニカルモデル間相互作用の促進と意思決定の強化を図る。
トレーニング後、MeDTは、望ましいポジティブな結果(生存)と、ユーザーが特定した短期的安定性の改善を条件にすることで、適切な治療勧告を生成することができる。
我々はMIMIC-IIIデータセットからのデータに対する厳密な実験を行い、外部評価を用いて、MeDTが既存のオフライン強化学習手法よりも優れた、あるいは競争力のある介入を推奨し、より解釈可能な、パーソナライズされた、クリニック指向のアプローチを可能にすることを実証する。
関連論文リスト
- Exploring LLM-based Data Annotation Strategies for Medical Dialogue Preference Alignment [22.983780823136925]
本研究は、医療対話モデルを改善するために、AIフィードバック(RLAIF)技術を用いた強化学習(Reinforcement Learning)について検討する。
医療におけるRLAIF研究の主な課題は、自動評価手法の限界である。
標準化された患者診査に基づく新しい評価枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-05T10:29:19Z) - Development and Validation of Heparin Dosing Policies Using an Offline Reinforcement Learning Algorithm [0.7519918949973486]
本研究では,強化学習に基づくパーソナライズされたヘパリン投与ポリシーを提案する。
オフラインRL環境における分配エラーを最小限に抑えるため,バッチ制約ポリシを実装した。
本研究はヘパリン投与の実践を強化し、医学における高度な意思決定支援ツールの開発の前例を確立する。
論文 参考訳(メタデータ) (2024-09-24T05:20:38Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Learning Optimal Treatment Strategies for Sepsis Using Offline
Reinforcement Learning in Continuous Space [4.031538204818658]
本稿では,臨床医がリアルタイム治療に最適な基準選択を推奨するのに役立つ,歴史的データに基づく新しい医療決定モデルを提案する。
本モデルでは, オフライン強化学習と深層強化学習を組み合わせることで, 医療における従来の強化学習が環境と相互作用できない問題に対処する。
論文 参考訳(メタデータ) (2022-06-22T16:17:21Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Learning Individualized Treatment Rules with Estimated Translated
Inverse Propensity Score [29.606141542532356]
本稿では、個別化された治療規則(ITR)を学習して治療方針を導出することに焦点を当てる。
本フレームワークでは,ITRの学習を文脈的盗聴問題とみなし,治療方針の予測リスクを最小限に抑える。
長期的目標として、当社の方針は、最終的にはIVおよびVPの治験ガイドラインの改善につながる可能性がある。
論文 参考訳(メタデータ) (2020-07-02T13:13:56Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
本研究の目的は, 介入を最適化する強化学習(RL)が, 学習方針の治験に対する規制に適合する経路を遡及的に得る枠組みを確立することである。
我々は,死の主な原因の一つであり,複雑で不透明な患者動態のため治療が困難である集中治療室の感染症に焦点を当てた。
論文 参考訳(メタデータ) (2020-03-13T20:31:47Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。