Domain Adaptive Lung Nodule Detection in X-ray Image
- URL: http://arxiv.org/abs/2407.19397v2
- Date: Fri, 2 Aug 2024 06:53:08 GMT
- Title: Domain Adaptive Lung Nodule Detection in X-ray Image
- Authors: Haifeng Zhao, Lixiang Jiang, Leilei Ma, Dengdi Sun, Yanping Fu,
- Abstract summary: We introduce a novel domain adaptive approach for lung nodule detection that leverages mean teacher self-training and contrastive learning.
First, we propose a hierarchical contrastive learning strategy to refine nodule representations and enhance the distinction between nodules and background.
Second, we introduce a nodule-level domain-invariant feature learning (NDL) module to capture domain-invariant features through adversarial learning.
- Score: 3.660022474436894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical images from different healthcare centers exhibit varied data distributions, posing significant challenges for adapting lung nodule detection due to the domain shift between training and application phases. Traditional unsupervised domain adaptive detection methods often struggle with this shift, leading to suboptimal outcomes. To overcome these challenges, we introduce a novel domain adaptive approach for lung nodule detection that leverages mean teacher self-training and contrastive learning. First, we propose a hierarchical contrastive learning strategy to refine nodule representations and enhance the distinction between nodules and background. Second, we introduce a nodule-level domain-invariant feature learning (NDL) module to capture domain-invariant features through adversarial learning across different domains. Additionally, we propose a new annotated dataset of X-ray images to aid in advancing lung nodule detection research. Extensive experiments conducted on multiple X-ray datasets demonstrate the efficacy of our approach in mitigating domain shift impacts.
Related papers
- Stethoscope-guided Supervised Contrastive Learning for Cross-domain
Adaptation on Respiratory Sound Classification [1.690115983364313]
We introduce cross-domain adaptation techniques, which transfer the knowledge from a source domain to a distinct target domain.
In particular, by considering different stethoscope types as individual domains, we propose a novel stethoscope-guided supervised contrastive learning approach.
The experimental results on the ICBHI dataset demonstrate that the proposed methods are effective in reducing the domain dependency and achieving the ICBHI Score of 61.71%, which is a significant improvement of 2.16% over the baseline.
arXiv Detail & Related papers (2023-12-15T08:34:31Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
We propose an unsupervised method for robust domain adaptation in brain MRI segmentation by leveraging MRI-specific augmentation techniques.
The results show that our proposed approach achieves high accuracy, exhibits broad applicability, and showcases remarkable robustness against domain shift in various tasks.
arXiv Detail & Related papers (2023-08-08T17:00:11Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical
Image Segmentation [18.830738606514736]
This work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation.
In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift.
Experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance.
arXiv Detail & Related papers (2023-06-06T08:56:58Z) - RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images [49.24576562557866]
We propose a novel method called region-guided masked image modeling (RGMIM) for learning meaningful representations from X-ray images.
RGMIM significantly improved performance in small data volumes, such as 5% and 10% of the training set compared to other methods.
arXiv Detail & Related papers (2022-11-01T07:41:03Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
arXiv Detail & Related papers (2022-06-27T09:02:16Z) - Multi-Domain Balanced Sampling Improves Out-of-Distribution
Generalization of Chest X-ray Pathology Prediction Models [67.2867506736665]
We propose an idea for out-of-distribution generalization of chest X-ray pathologies that uses a simple balanced batch sampling technique.
We observed that balanced sampling between the multiple training datasets improves the performance over baseline models trained without balancing.
arXiv Detail & Related papers (2021-12-27T15:28:01Z) - Margin-Aware Intra-Class Novelty Identification for Medical Images [2.647674705784439]
We propose a hybrid model - Transformation-based Embedding learning for Novelty Detection (TEND)
With a pre-trained autoencoder as image feature extractor, TEND learns to discriminate the feature embeddings of in-distribution data from the transformed counterparts as fake out-of-distribution inputs.
arXiv Detail & Related papers (2021-07-31T00:10:26Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.