論文の概要: Progressive Domain Adaptation for Thermal Infrared Object Tracking
- arxiv url: http://arxiv.org/abs/2407.19430v2
- Date: Tue, 3 Sep 2024 09:42:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 17:11:28.199778
- Title: Progressive Domain Adaptation for Thermal Infrared Object Tracking
- Title(参考訳): 熱赤外物体追跡のためのプログレッシブ領域適応
- Authors: Qiao Li, Kanlun Tan, Qiao Liu, Di Yuan, Xin Li, Yunpeng Liu,
- Abstract要約: 本稿では,TIR追跡のためのプログレッシブドメイン適応フレームワークを提案する。
このフレームワークは、大規模なTIRデータの時間と労働集約的なラベル付けを必要とせずに、大規模ラベル付きRGBデータセットをフル活用する。
5つのTIR追跡ベンチマーク実験の結果,提案手法は6%近い成功率を示し,その有効性を示した。
- 参考スコア(独自算出の注目度): 9.888266596236578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the lack of large-scale labeled Thermal InfraRed (TIR) training datasets, most existing TIR trackers are trained directly on RGB datasets. However, tracking methods trained on RGB datasets suffer a significant drop-off in TIR data due to the domain shift issue. To this end, in this work, we propose a Progressive Domain Adaptation framework for TIR Tracking (PDAT), which transfers useful knowledge learned from RGB tracking to TIR tracking. The framework makes full use of large-scale labeled RGB datasets without requiring time-consuming and labor-intensive labeling of large-scale TIR data. Specifically, we first propose an adversarial-based global domain adaptation module to reduce domain gap on the feature level coarsely. Second, we design a clustering-based subdomain adaptation method to further align the feature distributions of the RGB and TIR datasets finely. These two domain adaptation modules gradually eliminate the discrepancy between the two domains, and thus learn domain-invariant fine-grained features through progressive training. Additionally, we collect a largescale TIR dataset with over 1.48 million unlabeled TIR images for training the proposed domain adaptation framework. Experimental results on five TIR tracking benchmarks show that the proposed method gains a nearly 6% success rate, demonstrating its effectiveness.
- Abstract(参考訳): 大規模ラベル付きサーモ赤外線(TIR)トレーニングデータセットが不足しているため、既存のTIRトラッカーのほとんどはRGBデータセットで直接トレーニングされている。
しかし、RGBデータセットでトレーニングされたトラッキング手法は、ドメインシフトの問題により、TIRデータの大幅な低下に悩まされる。
そこで本研究では,RGBトラッキングから学習した有用な知識をTIRトラッキングに転送する,TIR追跡のためのプログレッシブドメイン適応フレームワークを提案する。
このフレームワークは、大規模なTIRデータの時間と労働集約的なラベル付けを必要とせずに、大規模ラベル付きRGBデータセットをフル活用する。
具体的には,まず,機能レベルでの領域ギャップを粗く抑えるために,対向型グローバルドメイン適応モジュールを提案する。
第2に、クラスタリングに基づくサブドメイン適応法を設計し、RGBおよびTIRデータセットの特徴分布を微調整する。
これら2つのドメイン適応モジュールは、2つのドメイン間の相違を徐々に排除し、プログレッシブトレーニングを通じてドメイン不変のきめ細かい特徴を学習する。
さらに、提案したドメイン適応フレームワークをトレーニングするために、ラベルなしのTIRイメージが148万以上ある大規模なTIRデータセットを収集します。
5つのTIR追跡ベンチマーク実験の結果,提案手法は6%近い成功率を示し,その有効性を示した。
関連論文リスト
- Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
統合センシング・通信(ISAC)は6G通信において重要であり、再構成可能なインテリジェントサーフェス(RIS)の急速な発展によって促進される
本稿では,複数の帯域にまたがるマルチモーダルCSIインジケータを協調的に活用し,クロスドメイン方式で追跡機能をモデル化するX2Trackフレームワークを提案する。
X2Trackの下では、トランスフォーマーニューラルネットワークと逆学習技術に基づいて、トラッキングエラーを最小限に抑える効率的なディープラーニングアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-05-10T08:04:27Z) - Thermal-Infrared Remote Target Detection System for Maritime Rescue
based on Data Augmentation with 3D Synthetic Data [4.66313002591741]
本稿では,深層学習とデータ拡張を用いた海難救助のための熱赤外(TIR)遠隔目標検出システムを提案する。
データセットの不足に対処し、モデルの堅牢性を改善するために、3Dゲーム(ARMA3)からの合成データセットを収集する。
提案したセグメンテーションモデルは,最先端セグメンテーション手法の性能を上回る。
論文 参考訳(メタデータ) (2023-10-31T12:37:49Z) - Visible-Infrared Person Re-Identification Using Privileged Intermediate
Information [10.816003787786766]
クロスモーダルな人物再識別(ReID)は、RGBとIRモダリティ間のデータ分散の大きなドメインシフトのために困難である。
本稿では2つのメインドメイン間のブリッジとして機能する中間仮想ドメインを作成するための新しいアプローチを提案する。
我々は、深いReIDモデルをトレーニングするための追加情報を提供する、可視領域と赤外線領域間の画像を生成する新しい手法を考案した。
論文 参考訳(メタデータ) (2022-09-19T21:08:14Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
本研究では,Dual Swin-Transformerを用いたMutual Interactive Networkを提案する。
視覚入力における長距離依存をモデル化するために,RGBと奥行きモードの両方の機能抽出器としてSwin-Transformerを採用している。
5つの標準RGB-D SODベンチマークデータセットに関する総合的な実験は、提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-06-07T08:35:41Z) - Temporal Aggregation for Adaptive RGBT Tracking [14.00078027541162]
本稿では,頑健な外見モデル学習を考慮したRGBTトラッカーを提案する。
空間情報のみを含むオブジェクト追跡タスクを実装している既存のRGBTトラッカーとは異なり、この手法では時間情報も考慮されている。
論文 参考訳(メタデータ) (2022-01-22T02:31:56Z) - Unsupervised Cross-Modal Distillation for Thermal Infrared Tracking [39.505507508776404]
畳み込みニューラルネットワークによって学習されるターゲット表現は、熱赤外(TIR)トラッキングにおいて重要な役割を果たす。
クロスモーダル蒸留(CMD)を用いたRGBモダリティからTIRモダリティの表現を抽出する。
我々のトラッカーは、それぞれ2.3%の成功、2.7%の精度、2.5%の正規化精度の絶対ゲインを達成して、ベースライントラッカーよりも優れています。
論文 参考訳(メタデータ) (2021-07-31T09:19:59Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
我々は、自己教師付き表現学習を用いて、クロスモーダルオートエンコーダと深さ-輪郭推定という2つのプレテキストタスクを設計する。
我々のプレテキストタスクは、ネットワークがリッチなセマンティックコンテキストをキャプチャする事前トレーニングを実行するのに、少数のRGB-Dデータセットしか必要としない。
RGB-D SODにおけるクロスモーダル核融合の固有の問題として,マルチパス核融合モジュールを提案する。
論文 参考訳(メタデータ) (2021-01-29T09:16:06Z) - Collaborative Training between Region Proposal Localization and
Classification for Domain Adaptive Object Detection [121.28769542994664]
オブジェクト検出のためのドメイン適応は、ラベル付きデータセットからラベル付きデータセットへの検出を適応させようとする。
本稿では,地域提案ネットワーク (RPN) と地域提案分類器 (RPC) が,大きなドメインギャップに直面した場合の転送可能性が大きく異なることを初めて明らかにする。
論文 参考訳(メタデータ) (2020-09-17T07:39:52Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
既存のRGB-Dサリエンシデータセットは小さく、多様なシナリオに対して過度に適合し、限定的な一般化につながる可能性がある。
そこで本研究では,RGB-Dサリエンシ検出のための半教師付きシステムを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:24:41Z) - Unsupervised Domain Adaptation through Inter-modal Rotation for RGB-D
Object Recognition [31.24587317555857]
本稿では,RGBと深度画像のモーダル間関係を利用して,合成領域から実領域へのシフトを低減する新しいRGB-D DA法を提案する。
提案手法は,主認識タスクに加えて,RGBと深度画像の相対的回転を予測するプリテキストタスクである畳み込みニューラルネットワークを訓練することで解決する。
論文 参考訳(メタデータ) (2020-04-21T13:53:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。