Multi-task Neural Networks for Pain Intensity Estimation using Electrocardiogram and Demographic Factors
- URL: http://arxiv.org/abs/2407.19475v1
- Date: Sun, 28 Jul 2024 11:57:50 GMT
- Title: Multi-task Neural Networks for Pain Intensity Estimation using Electrocardiogram and Demographic Factors
- Authors: Stefanos Gkikas, Chariklia Chatzaki, Manolis Tsiknakis,
- Abstract summary: We elaborate electrocardiography signals revealing the existence of variations in pain perception among different demographic groups.
We introduce a novel multi-task neural network for automatic pain estimation utilizing the age and the gender information of each individual.
- Score: 0.8602553195689511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pain is a complex phenomenon which is manifested and expressed by patients in various forms. The immediate and objective recognition of it is a great of importance in order to attain a reliable and unbiased healthcare system. In this work, we elaborate electrocardiography signals revealing the existence of variations in pain perception among different demographic groups. We exploit this insight by introducing a novel multi-task neural network for automatic pain estimation utilizing the age and the gender information of each individual, and show its advantages compared to other approaches.
Related papers
- Multi-Representation Diagrams for Pain Recognition: Integrating Various Electrodermal Activity Signals into a Single Image [0.8602553195689511]
This study has been submitted to the textitSecond Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN).
arXiv Detail & Related papers (2025-07-29T14:53:28Z) - GAMMA-PD: Graph-based Analysis of Multi-Modal Motor Impairment Assessments in Parkinson's Disease [9.69595196614787]
This paper proposes GAMMA-PD, a novel heterogeneous hypergraph fusion framework for multi-modal clinical data analysis.
GAMMA-PD integrates imaging and non-imaging data into a "hypernetwork" (patient population graph) by preserving higher-order information.
We demonstrate gains in predicting motor impairment symptoms in Parkinson's disease.
arXiv Detail & Related papers (2024-10-01T15:51:33Z) - Investigation of Customized Medical Decision Algorithms Utilizing Graph Neural Networks [15.04251924479172]
This paper introduces a personalized medical decision algorithm utilizing graph neural network (GNN)
The proposed personalized medical decision algorithm showed significantly superior performance in terms of disease prediction accuracy, treatment effect evaluation and patient risk stratification.
arXiv Detail & Related papers (2024-05-23T04:30:41Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Automated facial recognition system using deep learning for pain
assessment in adults with cerebral palsy [0.5242869847419834]
Existing measures, relying on direct observation by caregivers, lack sensitivity and specificity.
Ten neural networks were trained on three pain image databases.
InceptionV3 exhibited promising performance on the CP-PAIN dataset.
arXiv Detail & Related papers (2024-01-22T17:55:16Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Unbiased Pain Assessment through Wearables and EHR Data: Multi-attribute
Fairness Loss-based CNN Approach [3.799109312082668]
We propose a Multi-attribute Fairness Loss (MAFL) based CNN model to account for any sensitive attributes included in the data.
We compare the proposed model with well-known existing mitigation procedures, and studies reveal that the implemented model performs favorably in contrast to state-of-the-art methods.
arXiv Detail & Related papers (2023-07-03T09:21:36Z) - Transformer Encoder with Multiscale Deep Learning for Pain
Classification Using Physiological Signals [0.0]
Pain is a subjective sensation-driven experience.
Traditional techniques for measuring pain intensity are susceptible to bias and unreliable in some instances.
We develop PainAttnNet, a novel transfomer-encoder deep-learning framework for classifying pain intensities with physiological signals as input.
arXiv Detail & Related papers (2023-03-13T04:21:33Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
The selective attention mechanism helps the cognition system focus on task-relevant visual clues by ignoring the presence of distractors.
We propose a framework to leverage gaze for medical image analysis tasks with small training data.
Our method is demonstrated to achieve superior performance on both 3D tumor segmentation and 2D chest X-ray classification tasks.
arXiv Detail & Related papers (2021-12-02T07:55:25Z) - MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network
Architecture for Medical Image Analysis [71.2022403915147]
We introduce MEDUSA, a multi-scale encoder-decoder self-attention mechanism tailored for medical image analysis.
We obtain state-of-the-art performance on challenging medical image analysis benchmarks including COVIDx, RSNA RICORD, and RSNA Pneumonia Challenge.
arXiv Detail & Related papers (2021-10-12T15:05:15Z) - Non-contact Pain Recognition from Video Sequences with Remote
Physiological Measurements Prediction [53.03469655641418]
We present a novel multi-task learning framework which encodes both appearance changes and physiological cues in a non-contact manner for pain recognition.
We establish the state-of-the-art performance of non-contact pain recognition on publicly available pain databases.
arXiv Detail & Related papers (2021-05-18T20:47:45Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
We propose a novel hybrid model to learn the gait differences between three neurodegenerative diseases.
A new correlative memory neural network architecture is designed for extracting temporal features.
Compared with several state-of-the-art techniques, our proposed framework shows more accurate classification results.
arXiv Detail & Related papers (2021-01-07T10:17:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.