Overcoming Uncertain Incompleteness for Robust Multimodal Sequential Diagnosis Prediction via Curriculum Data Erasing Guided Knowledge Distillation
- URL: http://arxiv.org/abs/2407.19540v4
- Date: Thu, 30 Jan 2025 15:21:50 GMT
- Title: Overcoming Uncertain Incompleteness for Robust Multimodal Sequential Diagnosis Prediction via Curriculum Data Erasing Guided Knowledge Distillation
- Authors: Heejoon Koo,
- Abstract summary: We present NECHO v2, a novel framework designed to enhance the predictive accuracy of multimodal sequential patient diagnoses under uncertain missing visit sequences.
Firstly, we modify NECHO, designed in a diagnosis code-centric fashion, to handle uncertain modality representation dominance under the imperfect data.
Secondly, we develop a systematic knowledge distillation by employing the modified NECHO as both teacher and student.
- Score: 0.0
- License:
- Abstract: In this paper, we present NECHO v2, a novel framework designed to enhance the predictive accuracy of multimodal sequential patient diagnoses under uncertain missing visit sequences, a common challenge in real clinical settings. Firstly, we modify NECHO, designed in a diagnosis code-centric fashion, to handle uncertain modality representation dominance under the imperfect data. Secondly, we develop a systematic knowledge distillation by employing the modified NECHO as both teacher and student. It encompasses a modality-wise contrastive and hierarchical distillation, transformer representation random distillation, along with other distillations to align representations between teacher and student tightly and effectively. We also propose curriculum learning guided random data erasing within sequences during both training and distillation of the teacher to lightly simulate scenario with missing visit information, thereby fostering effective knowledge transfer. As a result, NECHO v2 verifies itself by showing robust superiority in multimodal sequential diagnosis prediction under both balanced and imbalanced incomplete settings on multimodal healthcare data.
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Reliable Multi-View Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography [6.540741143328299]
The acquired images are often 2-D cross-sections of a 3-D anatomy, potentially missing important anatomical details.
We propose Re-Training for Uncertainty (RT4U), a data-centric method to introduce uncertainty to weakly informative inputs in the training set.
When combined with conformal prediction techniques, RT4U can yield adaptively sized prediction sets which are guaranteed to contain the ground truth class to a high accuracy.
arXiv Detail & Related papers (2024-09-15T10:06:06Z) - Ensuring Ground Truth Accuracy in Healthcare with the EVINCE framework [2.5200794639628032]
The propagation of mislabeled data through machine learning models into clinical practice is unacceptable.
This paper proposes EVINCE, a system designed to 1) improve diagnosis accuracy and 2) rectify misdiagnoses and minimize training data errors.
arXiv Detail & Related papers (2024-05-20T18:26:36Z) - Advancing Pre-trained Teacher: Towards Robust Feature Discrepancy for Anomaly Detection [19.099643719358692]
We propose a simple yet effective two-stage industrial anomaly detection framework, termed as AAND.
In the first anomaly amplification stage, we propose a novel Residual Anomaly Amplification (RAA) module to advance the pre-trained teacher encoder.
We further employ a reverse distillation paradigm to train a student decoder, in which a novel Hard Knowledge Distillation (HKD) loss is built to better facilitate the reconstruction of normal patterns.
arXiv Detail & Related papers (2024-05-03T13:00:22Z) - Tackling the Incomplete Annotation Issue in Universal Lesion Detection
Task By Exploratory Training [10.627977735890191]
Universal lesion detection has great value for clinical practice as it aims to detect lesions in multiple organs on medical images.
Deep learning methods have shown promising results, but demanding large volumes of annotated data for training.
We introduce a teacher-student detection model as basis, where the teacher's predictions are combined with incomplete annotations to train the student.
arXiv Detail & Related papers (2023-09-23T08:44:07Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Adapter Learning in Pretrained Feature Extractor for Continual Learning
of Diseases [66.27889778566734]
Currently intelligent diagnosis systems lack the ability of continually learning to diagnose new diseases once deployed.
In particular, updating an intelligent diagnosis system with training data of new diseases would cause catastrophic forgetting of old disease knowledge.
An adapter-based Continual Learning framework called ACL is proposed to help effectively learn a set of new diseases.
arXiv Detail & Related papers (2023-04-18T15:01:45Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.