Uncertainty-Aware Multi-Expert Knowledge Distillation for Imbalanced Disease Grading
- URL: http://arxiv.org/abs/2505.00592v1
- Date: Thu, 01 May 2025 15:26:23 GMT
- Title: Uncertainty-Aware Multi-Expert Knowledge Distillation for Imbalanced Disease Grading
- Authors: Shuo Tong, Shangde Gao, Ke Liu, Zihang Huang, Hongxia Xu, Haochao Ying, Jian Wu,
- Abstract summary: We propose a novel textbfUncertainty-aware textbfMulti-experts textbfKnowledge textbfDistillation (UMKD) framework to transfer knowledge from multiple expert models to a single student model.
- Score: 9.879930338032736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic disease image grading is a significant application of artificial intelligence for healthcare, enabling faster and more accurate patient assessments. However, domain shifts, which are exacerbated by data imbalance, introduce bias into the model, posing deployment difficulties in clinical applications. To address the problem, we propose a novel \textbf{U}ncertainty-aware \textbf{M}ulti-experts \textbf{K}nowledge \textbf{D}istillation (UMKD) framework to transfer knowledge from multiple expert models to a single student model. Specifically, to extract discriminative features, UMKD decouples task-agnostic and task-specific features with shallow and compact feature alignment in the feature space. At the output space, an uncertainty-aware decoupled distillation (UDD) mechanism dynamically adjusts knowledge transfer weights based on expert model uncertainties, ensuring robust and reliable distillation. Additionally, UMKD also tackles the problems of model architecture heterogeneity and distribution discrepancies between source and target domains, which are inadequately tackled by previous KD approaches. Extensive experiments on histology prostate grading (\textit{SICAPv2}) and fundus image grading (\textit{APTOS}) demonstrate that UMKD achieves a new state-of-the-art in both source-imbalanced and target-imbalanced scenarios, offering a robust and practical solution for real-world disease image grading.
Related papers
- Diffusion-based Counterfactual Augmentation: Towards Robust and Interpretable Knee Osteoarthritis Grading [7.748673766536236]
This paper proposes a novel framework, Diffusion-based Counterfactual Augmentation (DCA), which enhances model robustness and interpretability.<n>The framework effectively converts model uncertainty into a robust training signal, offering a promising pathway to developing more accurate and trustworthy automated diagnostic systems.
arXiv Detail & Related papers (2025-06-18T04:16:28Z) - Knowledge Distillation and Enhanced Subdomain Adaptation Using Graph Convolutional Network for Resource-Constrained Bearing Fault Diagnosis [0.0]
We propose a progressive knowledge distillation framework that transfers knowledge from a complex teacher model to a compact and efficient student model.<n>We introduce Enhanced Local Maximum Mean Squared Discrepancy (ELMMSD), which leverages mean and variance statistics in the Reproducing Kernel Hilbert Space (RKHS) and incorporates a priori probability distributions between labels.
arXiv Detail & Related papers (2025-01-13T10:05:47Z) - Overcoming Uncertain Incompleteness for Robust Multimodal Sequential Diagnosis Prediction via Curriculum Data Erasing Guided Knowledge Distillation [0.0]
We present NECHO v2, a novel framework designed to enhance the predictive accuracy of multimodal sequential patient diagnoses under uncertain missing visit sequences.<n> Firstly, we modify NECHO, designed in a diagnosis code-centric fashion, to handle uncertain modality representation dominance under the imperfect data.<n> Secondly, we develop a systematic knowledge distillation by employing the modified NECHO as both teacher and student.
arXiv Detail & Related papers (2024-07-28T17:14:27Z) - Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis [33.91263917157504]
Uncertainty quantification (UQ) has become critical for evaluating the reliability of artificial intelligence systems.
This study addresses the interpretability of instance-wise uncertainty values in deep learning models for focal lesion segmentation in magnetic resonance imaging.
arXiv Detail & Related papers (2024-07-08T09:13:30Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport [46.91791643660991]
Deep learning models for multimodal expression recognition have reached remarkable performance in controlled laboratory environments.
These models struggle in the wild because of the unavailability and quality of modalities used for training.
In practice, only a subset of the training-time modalities may be available at test time.
Learning with privileged information enables models to exploit data from additional modalities that are only available during training.
arXiv Detail & Related papers (2024-01-27T19:44:15Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - SCLIFD:Supervised Contrastive Knowledge Distillation for Incremental
Fault Diagnosis under Limited Fault Data [8.354404360859263]
It is difficult to extract discriminative features from limited fault data.
A well-trained model must be retrained from scratch to classify the samples from new classes.
The model decision is biased toward the new classes due to the class imbalance.
arXiv Detail & Related papers (2023-02-12T14:50:12Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification [0.0]
We propose a modified Bootstrapping loss(BS loss) function with Mixup data augmentation strategy.
Our experiments indicated that BS loss with Mixup(BSM) model can halve the Expected Error(ECE) compared to standard data augmentation.
BSM model is able to perceive the semantic distance of out-of-domain data, demonstrating high potential in real-world clinical practice.
arXiv Detail & Related papers (2022-06-09T13:06:51Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image
Quality [3.5480752735999417]
Quality control (QC) of medical images is essential to ensure that downstream analyses such as segmentation can be performed successfully.
We aim to automate the process by formulating a probabilistic network that estimates uncertainty through a heteroscedastic noise model.
We show models trained with simulated artefacts provide informative measures of uncertainty on real-world images and we validate our uncertainty predictions on problematic images identified by human-raters.
arXiv Detail & Related papers (2020-01-31T16:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.