論文の概要: Cycle3D: High-quality and Consistent Image-to-3D Generation via Generation-Reconstruction Cycle
- arxiv url: http://arxiv.org/abs/2407.19548v1
- Date: Sun, 28 Jul 2024 17:58:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 15:45:34.627686
- Title: Cycle3D: High-quality and Consistent Image-to-3D Generation via Generation-Reconstruction Cycle
- Title(参考訳): Cycle3D:ジェネレーション・リコンストラクション・サイクルによる高品質で一貫性のあるイメージ・ツー・3D生成
- Authors: Zhenyu Tang, Junwu Zhang, Xinhua Cheng, Wangbo Yu, Chaoran Feng, Yatian Pang, Bin Lin, Li Yuan,
- Abstract要約: 本稿では,2次元拡散に基づく生成モジュールとフィードフォワード3D再構成モジュールを循環的に利用する,Cycle3Dと呼ばれる統一3D生成フレームワークを提案する。
本手法は,最先端のベースラインに比べて高品質で整合性の高い3Dコンテンツを生成する。
- 参考スコア(独自算出の注目度): 13.395131087126853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent 3D large reconstruction models typically employ a two-stage process, including first generate multi-view images by a multi-view diffusion model, and then utilize a feed-forward model to reconstruct images to 3D content.However, multi-view diffusion models often produce low-quality and inconsistent images, adversely affecting the quality of the final 3D reconstruction. To address this issue, we propose a unified 3D generation framework called Cycle3D, which cyclically utilizes a 2D diffusion-based generation module and a feed-forward 3D reconstruction module during the multi-step diffusion process. Concretely, 2D diffusion model is applied for generating high-quality texture, and the reconstruction model guarantees multi-view consistency.Moreover, 2D diffusion model can further control the generated content and inject reference-view information for unseen views, thereby enhancing the diversity and texture consistency of 3D generation during the denoising process. Extensive experiments demonstrate the superior ability of our method to create 3D content with high-quality and consistency compared with state-of-the-art baselines.
- Abstract(参考訳): 近年の3次元大規模再構成モデルでは、まずマルチビュー拡散モデルを用いてマルチビュー画像を生成し、次にフィードフォワードモデルを用いて3次元コンテンツを再構成するが、多次元拡散モデルはしばしば低品質で矛盾した画像を生成し、最終的な3次元再構成の品質に悪影響を及ぼす。
そこで本研究では,多段階拡散過程において,2次元拡散に基づく生成モジュールとフィードフォワード3次元再構成モジュールを循環的に利用する,Cycle3Dという統合3次元生成フレームワークを提案する。
具体的には、高品質なテクスチャを生成するために2次元拡散モデルを適用し、再構成モデルはマルチビューの一貫性を保証する。
大規模な実験により,最先端のベースラインと比較して,高品質で一貫性のある3Dコンテンツを作成する方法が優れていることが示された。
関連論文リスト
- Towards High-Fidelity 3D Portrait Generation with Rich Details by Cross-View Prior-Aware Diffusion [63.81544586407943]
シングルイメージの3Dポートレート生成法は通常、多視点の知識を提供するために2次元拡散モデルを使用し、それを3次元表現に蒸留する。
本稿では,複数ビュー画像の状態の整合性を高める条件として,複数ビュー先行を明示的かつ暗黙的に組み込んだハイブリッド優先ディフジョンモデルを提案する。
実験により,1枚の画像から正確な幾何学的,詳細な3次元像を作成できることが示された。
論文 参考訳(メタデータ) (2024-11-15T17:19:18Z) - Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High- resolution Image-to-3D model (Hi3D) はビデオ拡散に基づく新しいパラダイムであり、単一の画像を3D対応シーケンシャル画像生成としてマルチビュー画像に再定義する。
Hi3Dは事前に学習した映像拡散モデルを3D対応で強化し、低解像度のテクスチャディテールを持つマルチビュー画像を生成する。
論文 参考訳(メタデータ) (2024-09-11T17:58:57Z) - MVGamba: Unify 3D Content Generation as State Space Sequence Modeling [150.80564081817786]
本稿では,多視点ガウス再構成器を備えた一般軽量ガウス再構成モデルMVGambaを紹介する。
オフザディテールのマルチビュー拡散モデルを統合することで、MVGambaは単一の画像、スパース画像、テキストプロンプトから3D生成タスクを統一する。
実験により、MVGambaは、すべての3Dコンテンツ生成シナリオで最先端のベースラインを約0.1タイムのモデルサイズで上回ります。
論文 参考訳(メタデータ) (2024-06-10T15:26:48Z) - Bootstrap3D: Improving Multi-view Diffusion Model with Synthetic Data [80.92268916571712]
重要なボトルネックは、詳細なキャプションを持つ高品質な3Dオブジェクトの不足である。
本稿では,任意の量のマルチビュー画像を自動的に生成する新しいフレームワークBootstrap3Dを提案する。
我々は高画質合成多視点画像100万枚を高密度記述キャプションで生成した。
論文 参考訳(メタデータ) (2024-05-31T17:59:56Z) - Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image [28.759158325097093]
Unique3Dは、シングルビュー画像から高品質な3Dメッシュを効率的に生成するための、新しい画像間3Dフレームワークである。
我々のフレームワークは、最先端世代の忠実さと強力な一般化性を備えている。
論文 参考訳(メタデータ) (2024-05-30T17:59:54Z) - MVDiff: Scalable and Flexible Multi-View Diffusion for 3D Object Reconstruction from Single-View [0.0]
本稿では,単一画像から一貫した多視点画像を生成するための一般的なフレームワークを提案する。
提案モデルは,PSNR,SSIM,LPIPSなどの評価指標において,ベースライン法を超える3Dメッシュを生成することができる。
論文 参考訳(メタデータ) (2024-05-06T22:55:53Z) - Diffusion$^2$: Dynamic 3D Content Generation via Score Composition of Video and Multi-view Diffusion Models [6.738732514502613]
Diffusion$2$は動的3Dコンテンツ作成のための新しいフレームワークである。
3次元モデルからの幾何的一貫性と時間的滑らかさに関する知識を精査し、密集した多視点画像を直接サンプリングする。
非常にシームレスで一貫した4Dアセットを生成する上で,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2024-04-02T17:58:03Z) - ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance [76.7746870349809]
複雑な構成で高品質な3Dアセットを生成する3D生成フレームワークであるComboVerseについて,複数のモデルを組み合わせることを学習して紹介する。
提案手法は,標準スコア蒸留法と比較して,物体の空間的アライメントを重視している。
論文 参考訳(メタデータ) (2024-03-19T03:39:43Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。