論文の概要: Short-Term Photovoltaic Forecasting Model for Qualifying Uncertainty during Hazy Weather
- arxiv url: http://arxiv.org/abs/2407.19663v2
- Date: Tue, 8 Oct 2024 03:45:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 14:27:29.671711
- Title: Short-Term Photovoltaic Forecasting Model for Qualifying Uncertainty during Hazy Weather
- Title(参考訳): 悪天候下における不確かさの定量化のための短期太陽光発電予測モデル
- Authors: Xuan Yang, Yunxuan Dong, Lina Yang, Thomas Wu,
- Abstract要約: 我々は、悪天候下で不確実性を評価するために、改良されたエントロピーを導入する。
クラスタリングとアテンション機構は、計算コストを削減し、予測精度を高めるために使用される。
悪天候に関連する2つのデータセットの実験により、我々のモデルは予測精度を大幅に改善することを示した。
- 参考スコア(独自算出の注目度): 9.367926898177815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solar energy is one of the most promising renewable energy resources. Forecasting photovoltaic power generation is an important way to increase photovoltaic penetration. However, the difficulty in qualifying the uncertainty of PV power generation, especially during hazy weather, makes forecasting challenging. This paper proposes a novel model to address the issue. We introduce a modified entropy to qualify uncertainty during hazy weather while clustering and attention mechanisms are employed to reduce computational costs and enhance forecasting accuracy, respectively. Hyperparameters were adjusted using an optimization algorithm. Experiments on two datasets related to hazy weather demonstrate that our model significantly improves forecasting accuracy compared to existing models.
- Abstract(参考訳): 太陽エネルギーは最も有望な再生可能エネルギー資源の1つである。
太陽光発電の予測は、太陽光発電の浸透を増大させる重要な方法である。
しかし、特に悪天候時に太陽光発電の不確実性を評価することの難しさは、予測を困難にしている。
本稿では,この問題に対処する新しいモデルを提案する。
本稿では,クラスタリングとアテンション機構を併用して計算コストの削減と予測精度の向上を図るとともに,湿潤な天候下での不確実性を評価するための改良されたエントロピーを提案する。
ハイパーパラメータは最適化アルゴリズムを用いて調整された。
気象に関する2つのデータセット実験により,既存モデルと比較して予測精度が有意に向上したことが示された。
関連論文リスト
- Hiformer: Hybrid Frequency Feature Enhancement Inverted Transformer for Long-Term Wind Power Prediction [6.936415534357298]
ハイブリット周波数特徴強調変換器(ハイフォーマ)という新しい手法を提案する。
Hiformerは、気象条件と風力発電の相関関係のモデリングを強化するために、信号分解技術と気象特徴抽出技術を統合する。
最先端の手法と比較して、(i)予測精度を最大52.5%向上させ、(ii)計算時間を最大68.5%削減することができる。
論文 参考訳(メタデータ) (2024-10-17T08:00:36Z) - Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production [0.0]
このプロジェクトは、太陽エネルギー生産予測機能を統合することで、グローバル気象予報のための最先端グラフニューラルネットワーク(GNN)であるGraphCastモデルの拡張を示す。
提案手法は、GraphCastが生成した天気予報を利用して、ニューラルネットワークモデルを用いて、様々な気象条件に基づいて実際の太陽出力と潜在的な太陽出力の比率を予測する。
その結果, 太陽放射の正確な予測, 収束挙動, トレーニング損失の低減, および太陽放射パターンの正確な予測において, モデルの有効性が示された。
論文 参考訳(メタデータ) (2024-06-19T13:47:05Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
スコアベース拡散モデルは、多くの依存変数上の確率分布をモデル化するための新しいアプローチを提供する。
本手法は,超解速気象予測のための拡散モデルから多くの試料を発生させることにより,日頭太陽照度予測に適用する。
論文 参考訳(メタデータ) (2023-02-01T01:32:25Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
現在、英国電気市場は、規制当局が30分毎に発行する負荷(需要)予測によってガイドされている。
本稿では,機能工学(候補予測機能の選択),移動ウィンドウ予測,LSTMエンコーダデコーダを組み合わせたハイブリッド予測モデルHYENAを提案する。
論文 参考訳(メタデータ) (2022-05-20T22:13:25Z) - Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic
Models [14.579720180539136]
我々は、SURFRADネットワーク内の7つの局の公開データを用いてモデルを訓練し、評価する。
NGBoostは, 太陽放射予測モデルよりも, 時間内解像度で高い性能が得られることを示す。
論文 参考訳(メタデータ) (2020-10-09T17:57:59Z) - Short-term prediction of photovoltaic power generation using Gaussian
process regression [3.8386504037654534]
本稿は,英国におけるPVシステムによるエネルギーの予測に焦点をあてる。
モデルは3つの主要な要因に対して48時間の短期予測で評価される。
また、予測期間内でのクラウドカバレッジと、予測者としての最初のクラウドカバレッジについて、非常に短期的な予測を比較します。
論文 参考訳(メタデータ) (2020-10-05T18:35:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。