論文の概要: Structural damage detection via hierarchical damage information with volumetric assessment
- arxiv url: http://arxiv.org/abs/2407.19694v2
- Date: Wed, 15 Jan 2025 13:53:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:50:19.420273
- Title: Structural damage detection via hierarchical damage information with volumetric assessment
- Title(参考訳): 体積評価を伴う階層的損傷情報による構造的損傷検出
- Authors: Isaac Osei Agyemang, Isaac Adjei-Mensah, Daniel Acheampong, Gordon Owusu Boateng, Adu Asare Baffour,
- Abstract要約: 構造的健康モニタリング(SHM)は、インフラの安全性と寿命を確保するために不可欠である。
本稿では,これらの課題に対処するためのフレームワークであるGuided-DetNetについて紹介する。
Guided-DetNetの特徴は、GAM(Generative Attention Module)、階層的除去アルゴリズム(Hierarchical Elimination Algorithm)、VCVA(Volumetric Contour Visual Assessment)である。
- 参考スコア(独自算出の注目度): 1.4470320778878742
- License:
- Abstract: Structural health monitoring (SHM) is essential for ensuring the safety and longevity of infrastructure, but complex image environments, noisy labels, and reliance on manual damage assessments often hinder its effectiveness. This study introduces the Guided Detection Network (Guided-DetNet), a framework designed to address these challenges. Guided-DetNet is characterized by a Generative Attention Module (GAM), Hierarchical Elimination Algorithm (HEA), and Volumetric Contour Visual Assessment (VCVA). GAM leverages cross-horizontal and cross-vertical patch merging and cross-foreground-background feature fusion to generate varied features to mitigate complex image environments. HEA addresses noisy labeling using hierarchical relationships among classes to refine instances given an image by eliminating unlikely class instances. VCVA assesses the severity of detected damages via volumetric representation and quantification leveraging the Dirac delta distribution. A comprehensive quantitative study and two robustness tests were conducted using the PEER Hub dataset, and a drone-based application, which involved a field experiment, was conducted to substantiate Guided-DetNet's promising performances. In triple classification tasks, the framework achieved 96% accuracy, surpassing state-of-the-art classifiers by up to 3%. In dual detection tasks, it outperformed competitive detectors with a precision of 94% and a mean average precision (mAP) of 79% while maintaining a frame rate of 57.04fps, suitable for real-time applications. Additionally, robustness tests demonstrated resilience under adverse conditions, with precision scores ranging from 79% to 91%. Guided-DetNet is established as a robust and efficient framework for SHM, offering advancements in automation and precision, with the potential for widespread application in drone-based infrastructure inspections.
- Abstract(参考訳): 構造的健康モニタリング(SHM)は、インフラの安全性と長寿を保証するために不可欠であるが、複雑な画像環境、ノイズラベル、手動による損傷評価への依存は、その効果を阻害することが多い。
本稿では,これらの課題に対処するためのフレームワークであるGuided-DetNetについて紹介する。
Guided-DetNetは、GAM(Generative Attention Module)、HEA(Hierarchical Elimination Algorithm)、VCVA(Volumetric Contour Visual Assessment)によって特徴付けられる。
GAMは、複雑な画像環境を緩和するために、水平方向と垂直方向のパッチマージと地上方向の特徴融合を活用している。
HEAは、クラス間の階層的関係を用いたノイズラベリングに対処し、不可能なクラスのインスタンスを排除して、画像に与えられたインスタンスを洗練する。
VCVAは、ディラックデルタ分布を利用した体積表現と定量化によって検出された損傷の重症度を評価する。
PEER Hubデータセットを用いて総合的な定量的研究と2つのロバストネステストを行い、フィールド実験を含むドローンベースのアプリケーションにより、Guid-DetNetの有望なパフォーマンスを実証した。
3つの分類タスクにおいて、このフレームワークは96%の精度を達成し、最先端の分類器を最大3%超えた。
二重検出タスクでは、リアルタイム用途に適した57.04fpsのフレームレートを維持しながら、94%の精度で平均平均精度(mAP)が79%の競合検出器よりも優れていた。
さらに、ロバストネス試験は、悪条件下でのレジリエンスを示し、精度は79%から91%であった。
Guided-DetNetはSHMの堅牢で効率的なフレームワークとして確立されており、自動化と精度の向上を提供し、ドローンベースのインフラ検査に広く応用される可能性がある。
関連論文リスト
- Adaptive Signal Analysis for Automated Subsurface Defect Detection Using Impact Echo in Concrete Slabs [0.0]
本研究は,コンクリートスラブの地下欠陥発生領域を検出するための,新しい,自動化された,スケーラブルな手法を提案する。
このアプローチは、高度な信号処理、クラスタリング、および視覚分析を統合して、地下の異常を識別する。
結果は方法論の堅牢性を示し、最小限の偽陽性とほとんど欠陥のない欠陥発生領域を一貫して同定した。
論文 参考訳(メタデータ) (2024-12-23T20:05:53Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
現在の最先端ディープラーニング(DL)に基づく損傷検出モデルは、複雑でノイズの多い環境では優れた特徴抽出能力を欠いていることが多い。
DenseSPH-YOLOv5は、DenseNetブロックをバックボーンに統合したリアルタイムDLベースの高性能損傷検出モデルである。
DenseSPH-YOLOv5は平均平均精度(mAP)が85.25%、F1スコアが81.18%、精度(P)が89.51%である。
論文 参考訳(メタデータ) (2023-03-07T22:53:36Z) - SAFE: Sensitivity-Aware Features for Out-of-Distribution Object
Detection [10.306996649145464]
バッチ正規化による残差畳み込み層は感性認識機能(SAFE)を生じることを示す。
SAFEは、分布外検出と分布内検出を区別するために一貫して強力である。
検出対象毎にSAFEベクターを抽出し,サロゲートタスクで多層パーセプトロンを訓練し,クリーンな分布内例から逆摂動を識別する。
論文 参考訳(メタデータ) (2022-08-29T23:57:55Z) - Engineering deep learning methods on automatic detection of damage in
infrastructure due to extreme events [0.38233569758620045]
本稿では,深層学習を用いた極端な事象における自動構造損傷検出(SDD)に関する実験的検討を行った。
最初の研究では、152層のResidual Network(ResNet)を用いて8つのSDDタスクで複数のクラスを分類する。
その結果,損傷検出の精度はセグメンテーションネットワークのみを用いた場合に比べて有意に向上した。
論文 参考訳(メタデータ) (2022-05-01T19:55:56Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - From Sound Representation to Model Robustness [82.21746840893658]
本研究では, 環境音の標準的な表現(スペクトログラム)が, 被害者の残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
3つの環境音響データセットの様々な実験から、ResNet-18モデルは、他のディープラーニングアーキテクチャよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-27T17:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。