論文の概要: Introducing a new hyper-parameter for RAG: Context Window Utilization
- arxiv url: http://arxiv.org/abs/2407.19794v2
- Date: Sat, 17 Aug 2024 11:31:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 01:49:20.584577
- Title: Introducing a new hyper-parameter for RAG: Context Window Utilization
- Title(参考訳): RAGのための新しいハイパーパラメータの導入:コンテキストウィンドウの利用
- Authors: Kush Juvekar, Anupam Purwar,
- Abstract要約: RAGシステムは、外部知識ベースから取得した関連情報を組み込むことで、生成モデルを強化する。
検索および処理されたテキストチャンクのサイズは、RAG性能に影響を与える重要な要因である。
本研究の目的は,回答生成品質を最大化する最適チャンクサイズを特定することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a new hyper-parameter for Retrieval-Augmented Generation (RAG) systems called Context Window Utilization. RAG systems enhance generative models by incorporating relevant information retrieved from external knowledge bases, improving the factual accuracy and contextual relevance of generated responses. The size of the text chunks retrieved and processed is a critical factor influencing RAG performance. This study aims to identify the optimal chunk size that maximizes answer generation quality. Through systematic experimentation, we analyze the effects of varying chunk sizes on the efficiency and effectiveness of RAG frameworks. Our findings reveal that an optimal chunk size balances the trade-off between providing sufficient context and minimizing irrelevant information. These insights are crucial for enhancing the design and implementation of RAG systems, underscoring the importance of selecting an appropriate chunk size to achieve superior performance.
- Abstract(参考訳): 本稿では、コンテキストウインドウ利用(Context Window utilization)と呼ばれるRAG(Retrieval-Augmented Generation)システムのための新しいハイパーパラメータを提案する。
RAGシステムは、外部知識ベースから取得した関連情報を組み込んで生成モデルを強化し、生成した応答の事実的正確性と文脈的関連性を改善する。
検索および処理されたテキストチャンクのサイズは、RAG性能に影響を与える重要な要因である。
本研究の目的は,回答生成品質を最大化する最適チャンクサイズを特定することである。
組織的な実験を通じて,RAGフレームワークの効率と有効性に及ぼすチャンクサイズの影響を解析した。
以上の結果から,最適なチャンクサイズは,適切なコンテキストの提供と無関係情報の最小化とのトレードオフをバランスさせることがわかった。
これらの知見はRAGシステムの設計と実装の強化に不可欠であり、優れた性能を達成するために適切なチャンクサイズを選択することの重要性を強調している。
関連論文リスト
- Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models [26.353428245346166]
Extract-Refine-Retrieve-Read (ERRR)フレームワークは、Retrieval-Augmented Generation (RAG)システムにおける事前検索情報ギャップを埋めるように設計されている。
RAGで使用される従来のクエリ最適化手法とは異なり、ERRRフレームワークはLarge Language Models (LLM) から知識を抽出することから始まる。
論文 参考訳(メタデータ) (2024-11-12T14:12:45Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation [8.377398103067508]
我々は、RAGのユースケースのための大規模言語モデルを拡張するためのオープンソースのフレームワークであるRAG Foundryを紹介します。
RAG Foundryはデータ生成、トレーニング、推論、評価を単一のワークフローに統合する。
多様なRAG構成を持つLlama-3およびPhi-3モデルを拡張し,微調整することで,フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2024-08-05T15:16:24Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
大きな言語モデル(LLM)のメモリを拡張する一般的な方法は、検索拡張生成(RAG)である。
本稿では,検索結果の集合に対するクエリに関連する総情報の確率的尺度である,関連情報ゲインに基づく新しい単純な最適化指標を提案する。
RAGシステムの検索コンポーネントのドロップイン置換として使用すると、質問応答タスクにおける最先端のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2024-07-16T18:09:21Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。