論文の概要: RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching
- arxiv url: http://arxiv.org/abs/2407.19838v2
- Date: Sat, 08 Mar 2025 10:22:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:39:20.171779
- Title: RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching
- Title(参考訳): RNACG:フローマッチングに基づくユニバーサルRNA配列条件生成モデル
- Authors: Letian Gao, Zhi John Lu,
- Abstract要約: 本稿では,フローマッチングに基づくRNA配列設計のための汎用フレームワークであるRNACG(RNA Generator)を提案する。
1つのフレームワークでシーケンス生成を統一することにより、RNACGは複数のRNA設計パラダイムの統合を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: RNA plays a pivotal role in diverse biological processes, ranging from gene regulation to catalysis. Recent advances in RNA design, such as RfamGen, Ribodiffusion and RDesign, have demonstrated promising results, with successful designs of functional sequences. However, RNA design remains challenging due to the inherent flexibility of RNA molecules and the scarcity of experimental data on tertiary and secondary structures compared to proteins. These limitations highlight the need for a more universal and comprehensive approach to RNA design that integrates diverse annotation information at the sequence level. To address these challenges, we propose RNACG (RNA Conditional Generator), a universal framework for RNA sequence design based on flow matching. RNACG supports diverse conditional inputs, including structural, functional, and family-specific annotations, and offers a modular design that allows users to customize the encoding network for specific tasks. By unifying sequence generation under a single framework, RNACG enables the integration of multiple RNA design paradigms, from family-specific generation to tertiary structure inverse folding.
- Abstract(参考訳): RNAは、遺伝子の調節から触媒作用まで、様々な生物学的過程において重要な役割を担っている。
RfamGen、Ribodiffusion、RDesignといったRNA設計の最近の進歩は、機能配列の設計を成功させ、有望な結果を示している。
しかし、RNA分子の固有の柔軟性と第3次および第2次構造に関する実験データの不足により、RNA設計は依然として困難である。
これらの制限は、配列レベルで様々なアノテーション情報を統合するRNA設計に対するより普遍的で包括的なアプローチの必要性を強調している。
これらの課題に対処するために,フローマッチングに基づくRNA配列設計のための汎用フレームワークであるRNACG(RNA Conditional Generator)を提案する。
RNACGは、構造的、機能的、家族固有のアノテーションを含む多様な条件入力をサポートし、ユーザが特定のタスクのためにエンコードネットワークをカスタマイズできるモジュールデザインを提供する。
RNACGは、単一のフレームワークの下でシーケンス生成を統一することにより、ファミリー固有の生成から第三次構造の逆フォールディングまで、複数のRNA設計パラダイムの統合を可能にする。
関連論文リスト
- Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [53.488387420073536]
Life-Codeは、様々な生物学的機能にまたがる包括的なフレームワークである。
Life-Codeは3つのオミクスにまたがる様々なタスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-02-11T06:53:59Z) - RNA-GPT: Multimodal Generative System for RNA Sequence Understanding [6.611255836269348]
RNAは生命に不可欠な遺伝情報を運ぶ必須分子である。
この重要性にもかかわらず、RNAの研究はしばしば、この話題で利用可能な膨大な文献によって妨げられている。
本稿では,RNA発見の簡易化を目的としたマルチモーダルRNAチャットモデルであるRNA-GPTを紹介する。
論文 参考訳(メタデータ) (2024-10-29T06:19:56Z) - Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLMはRNA配列の大規模なデータセットを使用して、自己教師付き方法で、意味的に豊かな数値ベクトルで各RNA塩基をどう表現するかを学ぶ。
その中で、二次構造を予測することは、RNAの機能的機構を明らかにするための基本的な課題である。
本稿では,いくつかの事前学習されたRNA-LLMの総合的な実験解析を行い,それらを統合されたディープラーニングフレームワークにおけるRNA二次構造予測タスクと比較する。
論文 参考訳(メタデータ) (2024-10-21T17:12:06Z) - Latent Diffusion Models for Controllable RNA Sequence Generation [33.38594748558547]
RNAはDNAとタンパク質の間の重要な中間体であり、高い配列の多様性と複雑な3次元構造を示す。
可変長の離散RNA配列の生成と最適化のための潜時拡散モデルを開発した。
実験の結果、RNA拡散は様々な生物学的指標の自然な分布と一致した非コードRNAを生成することが確認された。
論文 参考訳(メタデータ) (2024-09-15T19:04:50Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - RNAFlow: RNA Structure & Sequence Design via Inverse Folding-Based Flow Matching [7.600990806121113]
RNAFlowはタンパク質条件のRNA配列構造設計のためのフローマッチングモデルである。
そのデノナイジングネットワークはRNA逆フォールディングモデルと事前訓練されたRosettaFold2NAネットワークを統合し、RNA配列と構造を生成する。
論文 参考訳(メタデータ) (2024-05-29T05:10:25Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
我々はこれらの課題に対処し、脳内のscRNA-seq解析の精度を高めるために設計された基礎モデルであるscHyenaを紹介する。
scHyenaは、線形適応層、遺伝子埋め込みによる位置エンコーディング、および双方向ハイエナ演算子を備えている。
これにより、生データから情報を失うことなく、全長の scRNA-seq データを処理できる。
論文 参考訳(メタデータ) (2023-10-04T10:30:08Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
本研究では,データ駆動型RNA設計パイプラインを体系的に構築することを目的とする。
我々は、ベンチマークデータセットを作成し、複雑なRNA第三次構造を表現するための包括的な構造モデリングアプローチを設計した。
RNA設計プロセスを容易にするために,塩基対を持つ抽出二次構造体を事前知識として組み込んだ。
論文 参考訳(メタデータ) (2023-01-25T17:19:49Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+はRNA言語モデルに基づくディープラーニング手法で、配列から単一鎖RNAの3次元構造を正確に予測する。
RhoFold+はRNA 3D構造予測のための完全に自動化されたエンドツーエンドパイプラインを提供する。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
本稿では,RNA配列設計に強化学習を適用した新しいベンチマークを提案する。このベンチマークでは,目的関数を配列の二次構造における自由エネルギーとして定義する。
本稿では,これらのアルゴリズムに対して行うアブレーション解析の結果と,バッチ間でのアルゴリズムの性能を示すグラフを示す。
論文 参考訳(メタデータ) (2021-11-05T02:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。