論文の概要: HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch
- arxiv url: http://arxiv.org/abs/2407.19987v1
- Date: Mon, 29 Jul 2024 13:20:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:46:37.875712
- Title: HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch
- Title(参考訳): HOBOTAN: テンソルネットワークとPyTorchを併用した高次バイナリ最適化ソリューション
- Authors: Shoya Yasuda, Shunsuke Sotobayashi, Yuichiro Minato,
- Abstract要約: 高次二項最適化(HOBO)のための新しい解法である HoOBOTAN を紹介する。
HOBOTANはCPUとGPUの両方をサポートし、GPUバージョンはPyTorchをベースに開発され、高速でスケーラブルなシステムを提供している。
本稿では,HOBOTANの設計,実装,性能評価,拡張性について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we introduce HOBOTAN, a new solver designed for Higher Order Binary Optimization (HOBO). HOBOTAN supports both CPU and GPU, with the GPU version developed based on PyTorch, offering a fast and scalable system. This solver utilizes tensor networks to solve combinatorial optimization problems, employing a HOBO tensor that maps the problem and performs tensor contractions as needed. Additionally, by combining techniques such as batch processing for tensor optimization and binary-based integer encoding, we significantly enhance the efficiency of combinatorial optimization. In the future, the utilization of increased GPU numbers is expected to harness greater computational power, enabling efficient collaboration between multiple GPUs for high scalability. Moreover, HOBOTAN is designed within the framework of quantum computing, thus providing insights for future quantum computer applications. This paper details the design, implementation, performance evaluation, and scalability of HOBOTAN, demonstrating its effectiveness.
- Abstract(参考訳): 本研究では,高次二項最適化(HOBO)のための新しい解法である HoOBOTAN を紹介する。
HOBOTANはCPUとGPUの両方をサポートし、GPUバージョンはPyTorchをベースに開発され、高速でスケーラブルなシステムを提供している。
この解法はテンソルネットワークを用いて組合せ最適化問題を解き、HOBOテンソルを用いて問題をマッピングし、必要に応じてテンソル収縮を行う。
さらに、テンソル最適化のためのバッチ処理やバイナリベースの整数符号化といった手法を組み合わせることにより、組合せ最適化の効率を大幅に向上させる。
将来的には,GPU数の増加による計算能力の向上が期待され,複数のGPU間の効率的なコラボレーションが実現され,スケーラビリティが向上する。
さらに、HOBOTANは量子コンピューティングのフレームワーク内で設計されており、将来の量子コンピュータアプリケーションに対する洞察を提供する。
本稿では,HOBOTANの設計,実装,性能評価,拡張性について述べる。
関連論文リスト
- Tensor Network Based HOBO Solver [0.0]
提案した解法は、定式化の観点から将来の拡張に有意義な可能性を持つ有望なツールである。
この解法は、量子コンピューティングにおける幅広い応用の有望な可能性を持っている。
論文 参考訳(メタデータ) (2024-07-23T00:33:34Z) - Hiperwalk: Simulation of Quantum Walks with Heterogeneous High-Performance Computing [0.0]
Hiperwalkは、異種高速コンピューティングを用いた量子ウォークのシミュレーションを容易にするように設計されている。
このパッケージは、連続時間と離散時間の両方の量子ウォークモデルのシミュレーションを可能にする。
論文 参考訳(メタデータ) (2024-06-12T13:17:05Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非キューブ最適化手法を提案する。
スペクトルの減衰に固有の対象関数の正則性を活用することにより、正確な証明を取得し、高度で強力なニューラルネットワークを活用することができる。
論文 参考訳(メタデータ) (2023-06-26T09:42:59Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - oneDNN Graph Compiler: A Hybrid Approach for High-Performance Deep
Learning Compilation [8.64220475114214]
oneDNN Graph Compilerは、コンパイラ最適化とエキスパートチューニングされたカーネルの両方のテクニックをハイパフォーマンスコード生成に使用するためのハイブリッドアプローチを採用している。
実験結果から,既存のテンソルコンパイラやプリミティブライブラリよりも高い性能を示した。
論文 参考訳(メタデータ) (2023-01-03T19:52:17Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
品質を犠牲にすることなく、より小さなネットワークを使用できる汎用的な新しい入力符号化を提案する。
小さなニューラルネットワークは、勾配降下によって値が最適化された訓練可能な特徴ベクトルの多分解能ハッシュテーブルによって拡張される。
数桁の高速化を実現し、高品質なニューラルネットワークプリミティブを数秒でトレーニングすることができる。
論文 参考訳(メタデータ) (2022-01-16T07:22:47Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
本稿では,Adaptive SGDが4つの最先端ソリューションよりも精度が高いことを示す。
本稿では,Adaptive SGDが時間と精度で4つの最先端ソリューションより優れていることを示す。
論文 参考訳(メタデータ) (2021-10-13T20:58:15Z) - Implementation of Parallel Simplified Swarm Optimization in CUDA [2.322689362836168]
最適化コンピューティングでは、インテリジェントなSwarmアルゴリズム(SIAs)が並列化に適している。
本稿では,計算能力と汎用性を考慮したGPUに基づくSimplified Swarm Algorithm Optimization (PSSO)を提案する。
結果から,Nの次数による時間複雑性の低減が達成され,資源プリエンプションの問題は完全に回避された。
論文 参考訳(メタデータ) (2021-10-01T00:15:45Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
ヘテロジニアスCPU+GPUアーキテクチャの深層学習のためのトレーニングアルゴリズムについて検討する。
私たちの2倍の目標 -- 収束率と資源利用を同時に最大化する -- は、この問題を難しくします。
これらのアルゴリズムの実装は,複数の実データセットよりも高速な収束と資源利用の両立を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:21:20Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
この研究は、人気のあるDual Block-Coordinate Ascent原則に基づく新しいMAP-solverを導入している。
驚いたことに、性能の低い解法に小さな変更を加えることで、既存の解法を大きなマージンで大幅に上回る新しい解法MPLP++を導出します。
論文 参考訳(メタデータ) (2020-04-16T16:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。